Previous |  Up |  Next

Article

Title: Clean matrices over commutative rings (English)
Author: Chen, Huanyin
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 59
Issue: 1
Year: 2009
Pages: 145-158
Summary lang: English
.
Category: math
.
Summary: A matrix $A\in M_n(R)$ is $e$-clean provided there exists an idempotent $E\in M_n(R)$ such that $A-E\in \mathop{\rm GL}_n(R)$ and $\det E=e$. We get a general criterion of $e$-cleanness for the matrix $[[a_1,a_2,\cdots ,a_{n+1}]]$. Under the $n$-stable range condition, it is shown that $[[a_1,a_2,\cdots ,a_{n+1}]]$ is $0$-clean iff $(a_1,a_2,\cdots ,a_{n+1})=1$. As an application, we prove that the $0$-cleanness and unit-regularity for such $n\times n$ matrix over a Dedekind domain coincide for all $n\geq 3$. The analogous for $(s,2)$ property is also obtained. (English)
Keyword: matrix
Keyword: clean element
Keyword: unit-regularity
MSC: 15A23
MSC: 16E50
idZBL: Zbl 1224.15034
idMR: MR2486621
.
Date available: 2010-07-20T14:56:39Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140469
.
Reference: [1] Camillo, V. P., Khurana, D. A.: Characterization of unit regular rings.Comm. Algebra 29 (2001), 2293-2295. Zbl 0992.16011, MR 1837978, 10.1081/AGB-100002185
Reference: [2] Camillo, V. P., Yu, H. P.: Exchange rings, units and idempotents.Comm. Algebra 22 (1994), 4737-4749. Zbl 0811.16002, MR 1285703, 10.1080/00927879408825098
Reference: [3] Chen, H.: Exchange rings with Artinian primitive factors.Algebr. Represent. Theory 2 (1999), 201-207. Zbl 0960.16009, MR 1702275, 10.1023/A:1009927211591
Reference: [4] Chen, H.: Separative ideals, clean elements, and unit-regularity.Comm. Algebra 34 (2006), 911-921. Zbl 1095.16005, MR 2208108, 10.1080/00927870500441825
Reference: [5] Fisher, J. W., Snider, R. L.: Rings generated by their units.J. Algebra 42 (1976), 363-368. Zbl 0335.16014, MR 0419510, 10.1016/0021-8693(76)90103-4
Reference: [6] Henriksen, M.: Two classes of rings generated by their units.J. Algebra 31 (1974), 182-193. Zbl 0285.16009, MR 0349745, 10.1016/0021-8693(74)90013-1
Reference: [7] Khurana, D., Lam, T. Y.: Clean matrices and unit-regular matrices.J. Algebra 280 (2004), 683-698. Zbl 1067.16050, MR 2090058, 10.1016/j.jalgebra.2004.04.019
Reference: [8] Lam, T. Y.: A crash course on stable range, cancellation, substitution and exchange.J. Algebra Appl. 3 (2004), 301-343. Zbl 1072.16013, MR 2096452, 10.1142/S0219498804000897
Reference: [9] Nicholson, W. K., Varadarjan, K.: Countable linear transformations are clean.Proc. Amer. Math. Soc. 126 (1998), 61-64. MR 1452816, 10.1090/S0002-9939-98-04397-4
Reference: [10] Nicholson, W. K., Zhou, Y.: Clean rings: A survey, Advances in Ring Theory.Proceedings of the 4th China-Japan-Korea International Conference (2004), 181-198. MR 2181857
Reference: [11] Raphael, R.: Rings which are generated by their units.J. Algebra 28 (1974), 199-205. Zbl 0271.16013, MR 0342554, 10.1016/0021-8693(74)90032-5
Reference: [12] Samei, K.: Clean elements in commutative reduced rings.Comm. Algebra 32 (2004), 3479-3486. Zbl 1068.06020, MR 2097473, 10.1081/AGB-120039625
.

Files

Files Size Format View
CzechMathJ_59-2009-1_10.pdf 258.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo