Title:
|
Clean matrices over commutative rings (English) |
Author:
|
Chen, Huanyin |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
59 |
Issue:
|
1 |
Year:
|
2009 |
Pages:
|
145-158 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A matrix $A\in M_n(R)$ is $e$-clean provided there exists an idempotent $E\in M_n(R)$ such that $A-E\in \mathop{\rm GL}_n(R)$ and $\det E=e$. We get a general criterion of $e$-cleanness for the matrix $[[a_1,a_2,\cdots ,a_{n+1}]]$. Under the $n$-stable range condition, it is shown that $[[a_1,a_2,\cdots ,a_{n+1}]]$ is $0$-clean iff $(a_1,a_2,\cdots ,a_{n+1})=1$. As an application, we prove that the $0$-cleanness and unit-regularity for such $n\times n$ matrix over a Dedekind domain coincide for all $n\geq 3$. The analogous for $(s,2)$ property is also obtained. (English) |
Keyword:
|
matrix |
Keyword:
|
clean element |
Keyword:
|
unit-regularity |
MSC:
|
15A23 |
MSC:
|
16E50 |
idZBL:
|
Zbl 1224.15034 |
idMR:
|
MR2486621 |
. |
Date available:
|
2010-07-20T14:56:39Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140469 |
. |
Reference:
|
[1] Camillo, V. P., Khurana, D. A.: Characterization of unit regular rings.Comm. Algebra 29 (2001), 2293-2295. Zbl 0992.16011, MR 1837978, 10.1081/AGB-100002185 |
Reference:
|
[2] Camillo, V. P., Yu, H. P.: Exchange rings, units and idempotents.Comm. Algebra 22 (1994), 4737-4749. Zbl 0811.16002, MR 1285703, 10.1080/00927879408825098 |
Reference:
|
[3] Chen, H.: Exchange rings with Artinian primitive factors.Algebr. Represent. Theory 2 (1999), 201-207. Zbl 0960.16009, MR 1702275, 10.1023/A:1009927211591 |
Reference:
|
[4] Chen, H.: Separative ideals, clean elements, and unit-regularity.Comm. Algebra 34 (2006), 911-921. Zbl 1095.16005, MR 2208108, 10.1080/00927870500441825 |
Reference:
|
[5] Fisher, J. W., Snider, R. L.: Rings generated by their units.J. Algebra 42 (1976), 363-368. Zbl 0335.16014, MR 0419510, 10.1016/0021-8693(76)90103-4 |
Reference:
|
[6] Henriksen, M.: Two classes of rings generated by their units.J. Algebra 31 (1974), 182-193. Zbl 0285.16009, MR 0349745, 10.1016/0021-8693(74)90013-1 |
Reference:
|
[7] Khurana, D., Lam, T. Y.: Clean matrices and unit-regular matrices.J. Algebra 280 (2004), 683-698. Zbl 1067.16050, MR 2090058, 10.1016/j.jalgebra.2004.04.019 |
Reference:
|
[8] Lam, T. Y.: A crash course on stable range, cancellation, substitution and exchange.J. Algebra Appl. 3 (2004), 301-343. Zbl 1072.16013, MR 2096452, 10.1142/S0219498804000897 |
Reference:
|
[9] Nicholson, W. K., Varadarjan, K.: Countable linear transformations are clean.Proc. Amer. Math. Soc. 126 (1998), 61-64. MR 1452816, 10.1090/S0002-9939-98-04397-4 |
Reference:
|
[10] Nicholson, W. K., Zhou, Y.: Clean rings: A survey, Advances in Ring Theory.Proceedings of the 4th China-Japan-Korea International Conference (2004), 181-198. MR 2181857 |
Reference:
|
[11] Raphael, R.: Rings which are generated by their units.J. Algebra 28 (1974), 199-205. Zbl 0271.16013, MR 0342554, 10.1016/0021-8693(74)90032-5 |
Reference:
|
[12] Samei, K.: Clean elements in commutative reduced rings.Comm. Algebra 32 (2004), 3479-3486. Zbl 1068.06020, MR 2097473, 10.1081/AGB-120039625 |
. |