Previous |  Up |  Next

Article

Title: Comparison theorems for the third order trinomial differential equations with delay argument (English)
Author: Džurina, Jozef
Author: Kotorová, Renáta
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 59
Issue: 2
Year: 2009
Pages: 353-370
Summary lang: English
.
Category: math
.
Summary: In this paper we study asymptotic properties of the third order trinomial delay differential equation $$ y'''(t)-p(t)y'(t)+g(t)y(\tau (t))= 0 $$ by transforming this equation to the binomial canonical equation. The results obtained essentially improve known results in the literature. On the other hand, the set of comparison principles obtained permits to extend immediately asymptotic criteria from ordinary to delay equations. (English)
Keyword: comparison theorem
Keyword: property (A)
Keyword: canonical operator
MSC: 34C10
idZBL: Zbl 1224.34251
idMR: MR2532381
.
Date available: 2010-07-20T15:12:59Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140485
.
Reference: [1] Bellman, R.: Stability theory of differential equations.New York-London McGraw-Hill Book Company, XIII (1953). Zbl 0053.24705, MR 0061235
Reference: [2] Chanturia, T. A., Kiguradze, I. T.: Asymptotic properties of solutions of nonautonomous ordinary differential equations.(1990), Nauka Moscow Russian.
Reference: [3] Džurina, J.: Asymptotic properties of the third order delay differential equations.Nonlinear Analysis 26 (1996), 33-39. MR 1354789, 10.1016/0362-546X(94)00239-E
Reference: [4] Džurina, J.: Comparison theorems for functional differential equations.(2002), EDIS Zilina.
Reference: [5] Džurina, J.: Comparison theorems for nonlinear ODE's.Math. Slovaca 42 (1992), 299-315. Zbl 0760.34030, MR 1182960
Reference: [6] Džurina, J.: Asymptotic properties of third-order differential equations with deviating argument.Czech. Math. J. 44 (1994), 163-172. MR 1257942
Reference: [7] Džurina, J.: Asymptotic properties of third order delay differential equations.Czech. Math. J. 45 (1995), 443-448. MR 1344509
Reference: [8] Erbe, L.: Existence of oscillatory solutions and asymptotic behavior for a class of third order linear differential equation.(1976), 64 Pacific J. Math. MR 0435508
Reference: [9] Hartman, P.: Ordinary differential equations.(1964), John Wiley & sons New York-London-Sydney. Zbl 0125.32102, MR 0171038
Reference: [10] Jones, G. D.: An asymptotic property of solutions $y'''+p(x)y'+q(x)y=0$.(1973),47 Pacific J. Math. MR 0326065
Reference: [11] Kiguradze, I. T.: On the oscillation of solutions of the equation $\frac{ d^mu}{ dt^m} + a(t)|u|^n\* sign u = 0$.(1964), 65 Mat. Sb. Russian. Zbl 0135.14302
Reference: [12] Kusano, T., Naito, M.: Comparison theorems for functional differential equations with deviating arguments.(1981), 3 J. Math. Soc. Japan. Zbl 0494.34049, MR 0620288
Reference: [13] Kusano, T., Naito, M., Tanaka, K.: Oscillatory and asymptotic behavior of solutions of a class of linear ordinary differential equations.(1981), 90 Proc. Roy. Soc. Edinburg. MR 0636062
Reference: [14] Lazer, A. C.: The behavior of solutions of the differential equation $y'''+p(x)y'+q(x)y=0$.(1966),17 Pacific J. Math. Zbl 0143.31501, MR 0193332
Reference: [15] Mahfoud, W. E.: Comparison theorems for delay differential equations.Pacific J. Math. 83 (1979), 187-197. Zbl 0441.34053, MR 0555047, 10.2140/pjm.1979.83.187
Reference: [16] Parhi, N., Padhi, S.: On asymptotic behaviour of delay differential equations of third order.391-403 34 (1998), Nonlin. Anal. MR 1635717, 10.1016/S0362-546X(97)00600-7
Reference: [17] Škerlík, A.: Integral criteria of oscillation for the third order linear differential equations.Math. Slovaca 45 (1995), 403-412. MR 1387057
Reference: [18] Trench, W. F.: Canonical forms and principal systems for general disconjugate equations.(1974), 189 Trans. Amer. Math. Soc. Zbl 0289.34051, MR 0330632, 10.1090/S0002-9947-1974-0330632-X
Reference: [19] Trench, W. F.: Eventual disconjugacy of linear differential equation.(1983), 83 Proc. Amer. Math. Soc. MR 0715867
.

Files

Files Size Format View
CzechMathJ_59-2009-2_6.pdf 287.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo