Previous |  Up |  Next

Article

Title: Boundary functions on a bounded balanced domain (English)
Author: Kot, Piotr
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 59
Issue: 2
Year: 2009
Pages: 371-379
Summary lang: English
.
Category: math
.
Summary: We solve the following Dirichlet problem on the bounded balanced domain $\Omega $ with some additional properties: For $p>0$ and a positive lower semi-continuous function $u$ on $\partial \Omega $ with $u(z)=u(\lambda z)$ for $|\lambda |=1$, $z\in \partial \Omega $ we construct a holomorphic function $f\in \Bbb O(\Omega )$ such that $u(z)=\int _{\Bbb Dz}|f|^pd \frak L_{\Bbb Dz}^2$ for $z\in \partial \Omega $, where $\Bbb D=\{\lambda \in \Bbb C\:|\lambda |<1\}$. (English)
Keyword: boundary behavior of holomorphic functions
Keyword: exceptional sets
Keyword: boundary functions
Keyword: Dirichlet problem
Keyword: Radon inversion problem
MSC: 30B30
MSC: 30D60
idZBL: Zbl 1224.30005
idMR: MR2532382
.
Date available: 2010-07-20T15:13:47Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140486
.
Reference: [1] Globevnik, J.: Holomorphic functions which are highly nonintegrable at the boundary.Isr. J. Math. 115 (2000), 195-203. Zbl 0948.32015, MR 1749678, 10.1007/BF02810586
Reference: [2] Jakóbczak, P.: The exceptional sets for functions from the Bergman space.Port. Math. 50 (1993), 115-128. MR 1300590
Reference: [3] Jakóbczak, P.: Highly non-integrable functions in the unit ball.Isr. J. Math. 97 (1997), 175-181. MR 1441246, 10.1007/BF02774034
Reference: [4] Jakóbczak, P.: Exceptional sets of slices for functions from the Bergman space in the ball.Can. Math. Bull. 44 (2001), 150-159. MR 1827853, 10.4153/CMB-2001-019-7
Reference: [5] Kot, P.: Description of simple exceptional sets in the unit ball.Czech. Math. J. 54 (2004), 55-63. Zbl 1052.30006, MR 2040218, 10.1023/B:CMAJ.0000027246.96443.28
Reference: [6] Kot, P.: Boundary functions in $L^2H(\Bbb B^n)$.Czech. Math. J. 57 (2007), 29-47. MR 2309946, 10.1007/s10587-007-0041-0
Reference: [7] Kot, P.: Homogeneous polynomials on strictly convex domains.Proc. Am. Math. Soc. 135 (2007), 3895-3903. Zbl 1127.32005, MR 2341939, 10.1090/S0002-9939-07-08939-3
Reference: [8] Kot, P.: Bounded holomorphic functions with given maximum modulus on all circles.Proc. Amer. Math. Soc 137 (2009), 179-187. Zbl 1157.32001, MR 2439439, 10.1090/S0002-9939-08-09468-9
.

Files

Files Size Format View
CzechMathJ_59-2009-2_7.pdf 249.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo