Previous |  Up |  Next

Article

Title: Denjoy integral and Henstock-Kurzweil integral in vector lattices. I (English)
Author: Kawasaki, Toshiharu
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 59
Issue: 2
Year: 2009
Pages: 381-399
Summary lang: English
.
Category: math
.
Summary: In this paper we define the derivative and the Denjoy integral of mappings from a vector lattice to a complete vector lattice and show the fundamental theorem of calculus. (English)
Keyword: derivative
Keyword: Denjoy integral
Keyword: Henstock-Kurzweil integral
Keyword: fundamental theorem of calculus
Keyword: vector lattice
Keyword: Riesz space
MSC: 26A39
MSC: 46B42
MSC: 46G05
MSC: 46G10
MSC: 46G12
idZBL: Zbl 1224.46083
idMR: MR2532373
.
Date available: 2010-07-20T15:15:05Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140487
.
Related article: http://dml.cz/handle/10338.dmlcz/140488
.
Reference: [1] Birkhoff, G.: Lattice Theory.Amer. Math. Soc. (1940). Zbl 0063.00402, MR 0001959
Reference: [2] Boccuto, A.: Differential and integral calculus in Riesz spaces.Tatra Mt. Math. Publ. 14 (1998), 293-323. MR 1651221
Reference: [3] Cristescu, R.: Ordered Vector Spaces and Linear Operators.Abacus Press (1976). Zbl 0322.46010, MR 0467238
Reference: [4] Izumi, S.: An abstract integral (X).Proc. Imp. Acad. Japan 18 (1942), 543-547. Zbl 0061.09909, MR 0021080, 10.3792/pia/1195573784
Reference: [5] Izumi, S., Sunouchi, G., Orihara, M., Kasahara, M.: Theory of Denjoy integral, I--II.Japanese Proc. Physico-Mathematical Soc. Japan 17 (1943), 102-120, 321-353.
Reference: [6] Kawasaki, T.: Order derivative of operators in vector lattices.Math. Japonica 46 (1997), 79-84. Zbl 0907.46038, MR 1466119
Reference: [7] Kawasaki, T.: On Newton integration in vector spaces.Math. Japonica 46 (1997), 85-90. Zbl 0913.46004, MR 1466120
Reference: [8] Kawasaki, T.: Order Lebesgue integration in vector lattices.Math. Japonica 48 (1998), 13-17. Zbl 0921.46041, MR 1644310
Reference: [9] Kawasaki, T.: Approximately order derivatives in vector lattices.Math. Japonica 49 (1999), 229-239. Zbl 0937.47041, MR 1687642
Reference: [10] Kawasaki, T.: Order derivative and order Newton integral of operators in vector lattices.Far East J. Math. Sci. 1 (1999), 903-926. Zbl 1069.46507, MR 1734826
Reference: [11] Kawasaki, T.: Uniquely determinedness of the approximately order derivative.Sci. Math. Japonicae Online 7 (2002), 333-336 Sci. Math. Japonicae 57 (2003), 365-371. Zbl 1039.46036, MR 1959995
Reference: [12] Kubota, Y.: Theory of the Integral.Japanese Maki (1977).
Reference: [13] Lee, P. Y.: Lanzhou Lectures on Henstock Integration.World Scientific (1989). Zbl 0699.26004, MR 1050957
Reference: [14] Luxemburg, W. A. J., Zaanen, A. C.: Riesz Spaces.North-Holland (1971). Zbl 0231.46014
Reference: [15] McGill, P.: Integration in vector lattices.J. London Math. Soc. 11 (1975), 347-360. Zbl 0309.28003, MR 0393414, 10.1112/jlms/s2-11.3.347
Reference: [16] Riečan, B., Neubrunn, T.: Integral, Measure, and Ordering.Kluwer (1997). MR 1489521
Reference: [17] Romanovski, P.: Intégrale de Denjoy dans les espaces abstraits.Recueil Mathématique (Mat. Sbornik) N. S. 9 (1941), 67-120. Zbl 0026.00302, MR 0004292
Reference: [18] Schaefer, H. H.: Banach Lattices and Positive Operators.Springer-Verlag (1974). Zbl 0296.47023, MR 0423039
Reference: [19] Vulikh, B. Z.: Introduction to the Theory of Partially Orderd Spaces.Wolters-Noordhoff (1967). MR 0224522
.

Files

Files Size Format View
CzechMathJ_59-2009-2_8.pdf 314.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo