Title:
|
On the Schröder-Bernstein problem for Carathéodory vector lattices (English) |
Author:
|
Jakubík, Ján |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
59 |
Issue:
|
2 |
Year:
|
2009 |
Pages:
|
419-430 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this note we prove that there exists a Carathéodory vector lattice $V$ such that $V\cong V^3$ and $V\ncong V^2$. This yields that $V$ is a solution of the Schröder-Bernstein problem for Carathéodory vector lattices. We also show that no Carathéodory Banach lattice is a solution of the Schröder-Bernstein problem. (English) |
Keyword:
|
vecrot lattice |
Keyword:
|
Boolean algebra |
Keyword:
|
internal direct factor |
MSC:
|
06F15 |
MSC:
|
06F20 |
MSC:
|
46A40 |
idZBL:
|
Zbl 1224.46006 |
idMR:
|
MR2532383 |
. |
Date available:
|
2010-07-20T15:17:23Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140489 |
. |
Reference:
|
[1] Birkhoff, G.: Lattice Theory.Am. Math. Soc. Providence (1967). Zbl 0153.02501 |
Reference:
|
[2] Cater, F. S.: Note on a variation of the Schröder-Bernstein problem for fields.Czech. Math. J. 52 (2002), 717-720. Zbl 1011.12002, MR 1940052, 10.1023/B:CMAJ.0000027226.39057.1f |
Reference:
|
[3] Chang, C. C.: Cardinal and ordinal multiplication of relation types.Proc. Sympos. Pure Math., Vol. II Am. Math. Soc. Providence (1961), 123-128. Zbl 0108.01101, MR 0130183 |
Reference:
|
[4] Simone, A. De, Mundici, D., Navara, M.: A Cantor-Bernstein theorem for $\sigma$-complete MV-algebras.Czech. Math. J. 53 (2002), 437-447. MR 1983464, 10.1023/A:1026299723322 |
Reference:
|
[5] Dvurečenskij, A.: Central elements and Cantor-Bernstein's theorem for pseudo-effect algebras.J. Austr. Math. Soc. 74 (2003), 121-143. Zbl 1033.03036, MR 1948263, 10.1017/S1446788700003177 |
Reference:
|
[6] Galego, E. M.: Schröder-Bernstein quintuples for Banach spaces.Bull. Pol. Acad. Sci., Math. 54 (2006), 113-124. Zbl 1109.46011, MR 2266142, 10.4064/ba54-2-3 |
Reference:
|
[7] Galego, E. M.: An arithmetical characterization of decompositions methods in Banach spaces via supplemented subspaces.Glasg. Math. J. 47 (2005), 489-500. MR 2202061, 10.1017/S0017089505002727 |
Reference:
|
[8] Goffman, C.: Remarks on lattice ordered groups and vector lattices. I. Carathéodory functions.Trans. Am. Math. Soc. 88 (1958), 107-120. Zbl 0088.02602, MR 0097331 |
Reference:
|
[9] Gowers, W. T.: A solution to the Schröder-Bernstein problem for Banach spaces.Bull. Lond. Math. Soc. 28 (1996), 297-304. Zbl 0863.46006, MR 1374409, 10.1112/blms/28.3.297 |
Reference:
|
[10] Hanf, W.: On some fundamental problems concerning isomorphisms of Boolean algebras.Math. Scand. 5 (1957), 205-217. MR 0108451, 10.7146/math.scand.a-10496 |
Reference:
|
[11] Jakubík, J.: Cardinal properties of lattice ordered groups.Fundam. Math. 74 (1972), 85-98. MR 0302528, 10.4064/fm-74-2-85-98 |
Reference:
|
[12] Jakubík, J.: Cantor-Bernstein theorem for MV-algebras.Czech. Math. J. 45 (1999), 517-526. MR 1708370, 10.1023/A:1022467218309 |
Reference:
|
[13] Jakubík, J.: On orthogonally $\sigma$-complete lattice ordered groups.Czech. Math. J. 52 (2002), 881-888. MR 1940067, 10.1023/B:CMAJ.0000027241.58807.5f |
Reference:
|
[14] Jakubík, J.: On Carathéodory vector lattices.Math. Slovaca 53 (2003), 479-503. MR 2038515 |
Reference:
|
[15] Jakubík, J.: On the Schröder-Bernstein problem for abelian lattice ordered groups and for MV-algebras.Soft Comput. 8 (2004), 581-586. 10.1007/s00500-003-0318-7 |
Reference:
|
[16] Kantorovich, L. V., Vulikh, B. Z., Pinsker, A. G.: Functional Analysis in Semiordered Spaces.Gostekhizdat Moskva-Leningrad (1950), Russian. |
Reference:
|
[17] Oger, F.: Products lexicographiques de groupes ordonnés: Isomorphisme et équivalence élémentaire.J. Algebra 109 (1987), 452-467. MR 0902963, 10.1016/0021-8693(87)90150-5 |
Reference:
|
[18] Sikorski, R.: A generalization of theorem of Banach and Cantor-Bernstein.Colloq. Math. 1 (1948), 140-144. MR 0027264, 10.4064/cm-1-2-140-144 |
Reference:
|
[19] Tarski, A.: Cardinal Algebras.Oxford University Press New York (1949). Zbl 0041.34502, MR 0029954 |
Reference:
|
[20] Trnková, V.: Isomorphisms of sums of countable Boolean algebras.Proc. Am. Math. Soc. 80 (1980), 389-392. MR 0580990, 10.2307/2043725 |
. |