Previous |  Up |  Next

Article

Title: On the Schröder-Bernstein problem for Carathéodory vector lattices (English)
Author: Jakubík, Ján
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 59
Issue: 2
Year: 2009
Pages: 419-430
Summary lang: English
.
Category: math
.
Summary: In this note we prove that there exists a Carathéodory vector lattice $V$ such that $V\cong V^3$ and $V\ncong V^2$. This yields that $V$ is a solution of the Schröder-Bernstein problem for Carathéodory vector lattices. We also show that no Carathéodory Banach lattice is a solution of the Schröder-Bernstein problem. (English)
Keyword: vecrot lattice
Keyword: Boolean algebra
Keyword: internal direct factor
MSC: 06F15
MSC: 06F20
MSC: 46A40
idZBL: Zbl 1224.46006
idMR: MR2532383
.
Date available: 2010-07-20T15:17:23Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140489
.
Reference: [1] Birkhoff, G.: Lattice Theory.Am. Math. Soc. Providence (1967). Zbl 0153.02501
Reference: [2] Cater, F. S.: Note on a variation of the Schröder-Bernstein problem for fields.Czech. Math. J. 52 (2002), 717-720. Zbl 1011.12002, MR 1940052, 10.1023/B:CMAJ.0000027226.39057.1f
Reference: [3] Chang, C. C.: Cardinal and ordinal multiplication of relation types.Proc. Sympos. Pure Math., Vol. II Am. Math. Soc. Providence (1961), 123-128. Zbl 0108.01101, MR 0130183
Reference: [4] Simone, A. De, Mundici, D., Navara, M.: A Cantor-Bernstein theorem for $\sigma$-complete MV-algebras.Czech. Math. J. 53 (2002), 437-447. MR 1983464, 10.1023/A:1026299723322
Reference: [5] Dvurečenskij, A.: Central elements and Cantor-Bernstein's theorem for pseudo-effect algebras.J. Austr. Math. Soc. 74 (2003), 121-143. Zbl 1033.03036, MR 1948263, 10.1017/S1446788700003177
Reference: [6] Galego, E. M.: Schröder-Bernstein quintuples for Banach spaces.Bull. Pol. Acad. Sci., Math. 54 (2006), 113-124. Zbl 1109.46011, MR 2266142, 10.4064/ba54-2-3
Reference: [7] Galego, E. M.: An arithmetical characterization of decompositions methods in Banach spaces via supplemented subspaces.Glasg. Math. J. 47 (2005), 489-500. MR 2202061, 10.1017/S0017089505002727
Reference: [8] Goffman, C.: Remarks on lattice ordered groups and vector lattices. I. Carathéodory functions.Trans. Am. Math. Soc. 88 (1958), 107-120. Zbl 0088.02602, MR 0097331
Reference: [9] Gowers, W. T.: A solution to the Schröder-Bernstein problem for Banach spaces.Bull. Lond. Math. Soc. 28 (1996), 297-304. Zbl 0863.46006, MR 1374409, 10.1112/blms/28.3.297
Reference: [10] Hanf, W.: On some fundamental problems concerning isomorphisms of Boolean algebras.Math. Scand. 5 (1957), 205-217. MR 0108451, 10.7146/math.scand.a-10496
Reference: [11] Jakubík, J.: Cardinal properties of lattice ordered groups.Fundam. Math. 74 (1972), 85-98. MR 0302528, 10.4064/fm-74-2-85-98
Reference: [12] Jakubík, J.: Cantor-Bernstein theorem for MV-algebras.Czech. Math. J. 45 (1999), 517-526. MR 1708370, 10.1023/A:1022467218309
Reference: [13] Jakubík, J.: On orthogonally $\sigma$-complete lattice ordered groups.Czech. Math. J. 52 (2002), 881-888. MR 1940067, 10.1023/B:CMAJ.0000027241.58807.5f
Reference: [14] Jakubík, J.: On Carathéodory vector lattices.Math. Slovaca 53 (2003), 479-503. MR 2038515
Reference: [15] Jakubík, J.: On the Schröder-Bernstein problem for abelian lattice ordered groups and for MV-algebras.Soft Comput. 8 (2004), 581-586. 10.1007/s00500-003-0318-7
Reference: [16] Kantorovich, L. V., Vulikh, B. Z., Pinsker, A. G.: Functional Analysis in Semiordered Spaces.Gostekhizdat Moskva-Leningrad (1950), Russian.
Reference: [17] Oger, F.: Products lexicographiques de groupes ordonnés: Isomorphisme et équivalence élémentaire.J. Algebra 109 (1987), 452-467. MR 0902963, 10.1016/0021-8693(87)90150-5
Reference: [18] Sikorski, R.: A generalization of theorem of Banach and Cantor-Bernstein.Colloq. Math. 1 (1948), 140-144. MR 0027264, 10.4064/cm-1-2-140-144
Reference: [19] Tarski, A.: Cardinal Algebras.Oxford University Press New York (1949). Zbl 0041.34502, MR 0029954
Reference: [20] Trnková, V.: Isomorphisms of sums of countable Boolean algebras.Proc. Am. Math. Soc. 80 (1980), 389-392. MR 0580990, 10.2307/2043725
.

Files

Files Size Format View
CzechMathJ_59-2009-2_10.pdf 252.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo