Previous |  Up |  Next

Article

Title: A simple formula for an analogue of conditional Wiener integrals and its applications. II (English)
Author: Cho, Dong Hyun
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 59
Issue: 2
Year: 2009
Pages: 431-452
Summary lang: English
.
Category: math
.
Summary: Let $C[0,T]$ denote the space of real-valued continuous functions on the interval $[0,T]$ with an analogue $w_\varphi $ of Wiener measure and for a partition $ 0=t_0< t_1< \cdots < t_n <t_{n+1}= T$ of $[0, T]$, let $X_n\: C[0,T]\to \mathbb R^{n+1}$ and $X_{n+1} \: C [0, T]\to \mathbb R^{n+2}$ be given by $X_n(x) = ( x(t_0), x(t_1), \cdots , x(t_n))$ and $X_{n+1} (x) = ( x(t_0), x(t_1), \cdots , x(t_{n+1}))$, respectively. \endgraf In this paper, using a simple formula for the conditional $w_\varphi $-integral of functions on $C[0, T]$ with the conditioning function $X_{n+1}$, we derive a simple formula for the conditional $w_\varphi $-integral of the functions with the conditioning function $X_n$. As applications of the formula with the function $X_n$, we evaluate the conditional $w_\varphi $-integral of the functions of the form $F_m(x) = \int _0^T (x(t))^m d t$ for $x\in C[0, T]$ and for any positive integer $m$. Moreover, with the conditioning $X_n$, we evaluate the conditional $w_\varphi $-integral of the functions in a Banach algebra $\mathcal S_{w_\varphi }$ which is an analogue of the Cameron and Storvick's Banach algebra $\mathcal S$. Finally, we derive the conditional analytic Feynman $w_\varphi $-integrals of the functions in $\mathcal S_{w_\varphi }$. (English)
Keyword: analogue of Wiener measure
Keyword: Cameron-Martin translation theorem
Keyword: conditional analytic Feynman $w_\varphi $-integral
Keyword: conditional Wiener integral
Keyword: Kac-Feynman formula
Keyword: simple formula for conditional $w_\varphi $-integral
MSC: 28C20
MSC: 60H05
idZBL: Zbl 1224.28031
idMR: MR2532375
.
Date available: 2010-07-20T15:18:20Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140490
.
Reference: [1] Ash, R. B.: Real analysis and probability.Academic Press, New York-London (1972). MR 0435320
Reference: [2] Cameron, R. H., Martin, W. T.: Transformations of Wiener integrals under translations.Ann. Math. 45 (1944), 386-396. Zbl 0063.00696, MR 0010346, 10.2307/1969276
Reference: [3] Cameron, R. H., Storvick, D. A.: Some Banach algebras of analytic Feynman integrable functionals.Lecture Notes in Math. 798, Springer, Berlin-New York (1980). Zbl 0439.28007, MR 0577446, 10.1007/BFb0097256
Reference: [4] Chang, K. S., Chang, J. S.: Evaluation of some conditional Wiener integrals.Bull. Korean Math. Soc. 21 (1984), 99-106. Zbl 0576.28023, MR 0768465
Reference: [5] Cho, D. H.: A simple formula for an analogue of conditional Wiener integrals and its applications.Trans. Amer. Math. Soc. 360 (2008), 3795-3811. Zbl 1151.28017, MR 2386246, 10.1090/S0002-9947-08-04380-8
Reference: [6] Chung, D. M., Skoug, D.: Conditional analytic Feynman integrals and a related Schrödinger integral equation.SIAM J. Math. Anal. 20 (1989), 950-965. Zbl 0678.28007, MR 1000731, 10.1137/0520064
Reference: [7] Im, M. K., Ryu, K. S.: An analogue of Wiener measure and its applications.J. Korean Math. Soc. 39 (2002), 801-819. Zbl 1017.28007, MR 1920906, 10.4134/JKMS.2002.39.5.801
Reference: [8] Laha, R. G., Rohatgi, V. K.: Probability theory.John Wiley & Sons, New York-Chichester-Brisbane (1979). Zbl 0409.60001, MR 0534143
Reference: [9] Park, C., Skoug, D.: A simple formula for conditional Wiener integrals with applications.Pacific J. Math. 135 (1988), 381-394. Zbl 0655.28007, MR 0968620, 10.2140/pjm.1988.135.381
Reference: [10] Ryu, K. S., Im, M. K.: A measure-valued analogue of Wiener measure and the measure-valued Feynman-Kac formula.Trans. Amer. Math. Soc. 354 (2002), 4921-4951. Zbl 1017.28008, MR 1926843, 10.1090/S0002-9947-02-03077-5
Reference: [11] Yeh, J.: Transformation of conditional Wiener integrals under translation and the Cameron-Martin translation theorem.Tôhoku Math. J. 30 (1978), 505-515. Zbl 0409.28006, MR 0516883, 10.2748/tmj/1178229910
Reference: [12] Yeh, J.: Inversion of conditional Wiener integrals.Pacific J. Math. 59 (1975), 623-638. Zbl 0365.60073, MR 0390162, 10.2140/pjm.1975.59.623
Reference: [13] Yeh, J.: Inversion of conditional expectations.Pacific J. Math. 52 (1974), 631-640. Zbl 0323.60003, MR 0365644, 10.2140/pjm.1974.52.631
Reference: [14] Yeh, J.: Stochastic processes and the Wiener integral.Marcel Dekker, New York (1973). Zbl 0277.60018, MR 0474528
.

Files

Files Size Format View
CzechMathJ_59-2009-2_11.pdf 327.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo