Previous |  Up |  Next

Article

Title: Analysis of the flows of incompressible fluids with pressure dependent viscosity fulfilling $\nu (p, \cdot ) \to + \infty $ as $p \to +\infty $ (English)
Author: Bulíček, M.
Author: Málek, J.
Author: Rajagopal, K. R.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 59
Issue: 2
Year: 2009
Pages: 503-528
Summary lang: English
.
Category: math
.
Summary: Over a large range of the pressure, one cannot ignore the fact that the viscosity grows significantly (even exponentially) with increasing pressure. This paper concerns long-time and large-data existence results for a generalization of the Navier-Stokes fluid whose viscosity depends on the shear rate and the pressure. The novelty of this result stems from the fact that we allow the viscosity to be an unbounded function of pressure as it becomes infinite. In order to include a large class of viscosities and in order to explain the main idea in as simple a manner as possible, we restrict ourselves to a discussion of the spatially periodic problem. (English)
Keyword: {existence, weak solution, incompressible fluid, pressure-dependent viscosity, shear-dependent viscosity, spatially periodic problem}
MSC: 35Q30
MSC: 76A05
MSC: 76D03
MSC: 76D05
idZBL: Zbl 1224.35311
idMR: MR2532387
.
Date available: 2010-07-20T15:21:47Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140494
.
Reference: [1] Andrade, C.: Viscosity of liquids.{Nature} 125 309-310 (1930) \JFM 56.1264.10. 10.1038/125309b0
Reference: [2] Bair, S.: A more complete description of the shear rheology of high-temperature, high-shear journal bearing lubrication.{Tribology transactions} 49 39-45 (2006). 10.1080/05698190500414391
Reference: [3] Bair, S., Kottke, P.: Pressure-viscosity relationships for elastohydrodynamics.{Tribology transactions} 46 289-295 (2003). 10.1080/10402000308982628
Reference: [4] Barus, C.: Isothermals, isopiestics and isometrics relative to viscosity.{American Jour. Sci.} 45 87-96, (1893).
Reference: [5] Bridgman, P. W.: {The Physics of High Pressure}.MacMillan, New York (1931).
Reference: [6] Bulíček, M., Málek, J., Rajagopal, K.R.: Navier's slip and evolutionary Navier-Stokes-like systems with pressure and shear-rate dependent viscosity.{Indiana Univ. Math. J.} 56 51-86 (2007). Zbl 1129.35055, MR 2305930, 10.1512/iumj.2007.56.2997
Reference: [7] Bulíček, M., Málek, J., Rajagopal, K. R.: Mathematical analysis of unsteady flows of fluids with pressure, shear-rate and temperature dependent material moduli, that slip at solid boundaries.(to appear) in SIAM J. Math. Anal. MR 2515781
Reference: [8] Franta, M., Málek, J., Rajagopal, K. R.: On steady flows of fluids with pressure- and shear-dependent viscosities.{Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.} 461(2055) 651-670 (2005). MR 2121929, 10.1098/rspa.2004.1360
Reference: [9] Hron, J., Málek, J., Nečas, J., Rajagopal, K. R.: Numerical simulations and global existence of solutions of two-dimensional flows of fluids with pressure- and shear-dependent viscosities.{Math. Comput. Simulation} 61(3-6) 297-315 (2003). MR 1984133, 10.1016/S0378-4754(02)00085-X
Reference: [10] Leray, J.: Sur le mouvement d'un liquide visquex emplissant l'espace.{Acta Math.} 63 193-248(1934)\JFM 60.0726.05. MR 1555394, 10.1007/BF02547354
Reference: [11] Málek, J., Nečas, J., Rajagopal, K. R.: Global analysis of the flows of fluids with pressure-dependent viscosities.{Arch. Ration. Mech. Anal.} 165(3) 243-269 (2002). MR 1941479, 10.1007/s00205-002-0219-4
Reference: [12] Málek, J., Nečas, J., Rokyta, M., Růžička, M.: {Weak and Measure-valued Solutions to Evolutionary PDEs}.Chapman & Hall, London (1996). MR 1409366
Reference: [13] Málek, J., Rajagopal, K. R.: Mathematical Properties of the Solutions to the Equations Govering the Flow of Fluid with Pressure and Shear Rate Dependent Viscosities.In {Handbook of Mathematical Fluid Dynamics, Vol. IV}, Handb. Differ. Equ 407-444 Elsevier/North-Holland, Amsterdam (2007). MR 3929620
Reference: [14] Rajagopal, K. R.: On implicit constitutive theories.{Appl. Math.} 48(4) 279-319 (2003). Zbl 1099.74009, MR 1994378, 10.1023/A:1026062615145
Reference: [15] Rajagopal, K. R.: On implicit constitutive theories for fluids.{J. Fluid Mech.} 550 243-249 (2006). Zbl 1097.76009, MR 2263984, 10.1017/S0022112005008025
Reference: [16] Rajagopal, K. R., Srinivasa, A. R.: On the nature of constraints for continua undergoing dissipative processes.{Proc. R. Soc. A} 461 2785-2795 (2005). Zbl 1186.74008, MR 2165511, 10.1098/rspa.2004.1385
Reference: [17] Schaeffer, D. G.: Instability in the evolution equations describing incompressible granular flow.{J. Differential Equations} 66(1) 19-50 (1987). Zbl 0647.35037, MR 0871569, 10.1016/0022-0396(87)90038-6
Reference: [18] Schaeffer, D. G.: Instability in the evolution equations describing incompressible granular flow.{J. Differential Equations} 66(1) 19-50 (1987). Zbl 0647.35037, MR 0871569, 10.1016/0022-0396(87)90038-6
.

Files

Files Size Format View
CzechMathJ_59-2009-2_15.pdf 378.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo