Previous |  Up |  Next

Article

Title: On potentially nilpotent double star sign patterns (English)
Author: Li, Honghai
Author: Li, Jiongsheng
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 59
Issue: 2
Year: 2009
Pages: 489-501
Summary lang: English
.
Category: math
.
Summary: A matrix $\Cal A$ whose entries come from the set $\{+,-,0\}$ is called a {\it sign pattern matrix}, or {\it sign pattern}. A sign pattern is said to be potentially nilpotent if it has a nilpotent realization. In this paper, the characterization problem for some potentially nilpotent double star sign patterns is discussed. A class of double star sign patterns, denoted by ${\cal DSSP}(m,2)$, is introduced. We determine all potentially nilpotent sign patterns in ${\cal DSSP}(3,2)$ and ${\cal DSSP}(5,2)$, and prove that one sign pattern in ${\cal DSSP}(3,2)$ is potentially stable. (English)
Keyword: sign pattern
Keyword: double star
Keyword: potentially nilpotent
Keyword: potentially stable
MSC: 05C50
MSC: 15A18
idZBL: Zbl 1224.05303
idMR: MR2532386
.
Date available: 2010-07-20T15:20:27Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140493
.
Reference: [1] Bone, T.: Positive feedback may sometimes promote stability.Linear Algebra Appl. 51 (1983),143-151. Zbl 0515.93042, MR 0699729
Reference: [2] Drew, J. H., Johnson, C. R., Olesky, D. D.: P. van den Driessche, Spectrally arbitrary patterns.Linear Algebra Appl. 308 (2000), 121-137. MR 1751135
Reference: [3] Eschenbach, C. A., Li, Z.: Potentially nilpotent sign pattern matrices.Linear Algebra Appl. 299 (1999), 81-99. Zbl 0941.15012, MR 1723710
Reference: [4] Johnson, C. R., Summers, T. S.: The potentially stable tree sign patterns for dimensions less than five.Linear Algebra Appl. 126 (1989), 1-13. Zbl 0723.05047, MR 1040769
Reference: [5] MacGillivray, G., Tifenbach, R. M., Driessche, P. van den: Spectrally arbitrary star sign patterns.Linear Algebra Appl. 400 (2005), 99-119. MR 2131919
Reference: [6] Yeh, L.: Sign pattern matrices that allow a nilpotent matrix.Bull. Aust. Math. Soc. 53 (1996), 189-196. Zbl 0848.15014, MR 1381760, 10.1017/S0004972700016907
.

Files

Files Size Format View
CzechMathJ_59-2009-2_14.pdf 265.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo