Previous |  Up |  Next

Article

Title: Surgery on pairs of closed manifolds (English)
Author: Cavicchioli, Alberto
Author: Muranov, Yuri V.
Author: Spaggiari, Fulvia
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 59
Issue: 2
Year: 2009
Pages: 551-571
Summary lang: English
.
Category: math
.
Summary: To apply surgery theory to the problem of classifying pairs of closed manifolds, it is necessary to know the subgroup of the group $LP_*$ generated by those elements which are realized by normal maps to a pair of closed manifolds. This closely relates to the surgery problem for a closed manifold and to the computation of the assembly map. In this paper we completely determine such subgroups for many cases of Browder-Livesay pairs of closed manifolds. Moreover, very explicit results are obtained in the case of an elementary fundamental group. Then we generalize them, and obtain several further results about the realization of elements in the Browder-Quinn surgery obstruction groups by means of normal maps to a closed manifold filtered by closed submanifolds. (English)
Keyword: surgery on manifolds
Keyword: surgery obstruction groups for a manifold pair
Keyword: assembly map
Keyword: splitting problem
Keyword: Browder-Livesay groups
Keyword: Browder-Quinn surgery obstruction groups
Keyword: splitting obstruction groups
Keyword: manifolds with filtration
MSC: 18F25
MSC: 19J25
MSC: 55T99
MSC: 57R67
MSC: 58A35
idZBL: Zbl 1224.57014
idMR: MR2532390
.
Date available: 2010-07-20T15:24:50Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140497
.
Reference: [1] Akhmetiev, P. M., Cavicchioli, A., Repovš, D.: On realization of splitting obstructions in Browder-Livesay groups for closed manifold pairs.Proc. Edinb. Math. Soc. 43 (2000), 15-25. MR 1744696, 10.1017/S0013091500020666
Reference: [2] Bak, A., Muranov, Yu. V.: Splitting along submanifolds and $\Bbb L$-spectra.Sovrem. Mat. Prilozh., Topol., Anal. Smezh. Vopr. (2003), 3-18 Russian English transl. J. Math. Sci. 123 (2004), 4169-4184. Zbl 1078.57030, MR 2157601
Reference: [3] Bak, A., Muranov, Yu. V.: Normal invariants of manifold pairs and assembly maps.Mat. Sb. 197 (2006), 3-24 Russian English transl. Sb. Math. 197 (2006), 791-811. Zbl 1148.57042, MR 2477279
Reference: [4] Bak, A., Muranov, Yu. V.: Splitting along a submanifold with filtration.In preparation.
Reference: [5] Browder, W., Livesay, G. R.: Fixed point free involutions on homotopy spheres.Bull. Am. Math. Soc. 73 (1967), 242-245. Zbl 0156.21903, MR 0206965, 10.1090/S0002-9904-1967-11700-2
Reference: [6] Browder, W., Quinn, F.: A Surgery Theory for G-manifolds and Stratified Sets.Proc. Int. Conf. Manifolds, Tokyo 1973 Univ. of Tokyo Press Tokyo (1975), 27-36. Zbl 0343.57017, MR 0375348
Reference: [7] Cappell, S. E., Shaneson, J. L.: Pseudo-free actions I.Lect. Notes Math. 763 (1979), 395-447. Zbl 0416.57020, MR 0561231, 10.1007/BFb0088095
Reference: [8] Cavicchioli, A., Muranov, Yu. V., Spaggiari, F.: Relative groups in surgery theory.Bull. Belg. Math. Soc. 12 (2005), 109-135. Zbl 1072.57025, MR 2134861, 10.36045/bbms/1113318134
Reference: [9] Cavicchioli, A., Muranov, Yu. V., Spaggiari, F.: Mixed structures on a manifold with boundary.Glasg. Math. J. 48 (2006), 125-143. Zbl 1110.57019, MR 2224934, 10.1017/S0017089505002934
Reference: [10] Cavicchioli, A., Muranov, Yu. V., Spaggiari, F.: Assembly maps and realization of splitting obstructions.(to appear). MR 2563187
Reference: [11] Hambleton, I.: Projective surgery obstructions on closed manifolds.Lect. Notes Math. 967 (1982), 101-131. Zbl 0503.57018, MR 0689390, 10.1007/BFb0061900
Reference: [12] Hambleton, I., Ranicki, A., Taylor, L.: Round $L$-theory.J. Pure Appl. Algebra 47 (1987), 131-154. Zbl 0638.18003, MR 0906966, 10.1016/0022-4049(87)90057-0
Reference: [13] Hambleton, I., Milgram, J., Taylor, L., Williams, B.: Surgery with finite fundamental group.Proc. Lond. Math. Soc. 56 (1988), 349-379. Zbl 0665.57026, MR 0922660, 10.1112/plms/s3-56.2.349
Reference: [14] Hambleton, I., Kharshiladze, A. F.: A spectral sequence in surgery theory.Mat. Sb. (1992), 183 3-14 Russian English transl. Russ. Acad. Sci. Sb. Math. 77 (1994), 1-9. MR 1198831
Reference: [15] Kharshiladze, A. F.: Iterated Browder-Livesay invariants and oozing problem.Mat. Zametki 41 (1987), 557-563 Russian English transl. Math. Notes 41 (1987), 312-315. MR 0897701
Reference: [16] Kharshiladze, A. F.: Surgery on manifolds with finite fundamental groups.Uspechi Mat. Nauk 42 (1987), 55-85 Russian English transl. Russ. Math. Surv. 42 (1987), 65-103. Zbl 0671.57020, MR 0912061
Reference: [17] Jimenez, R., Muranov, Yu. V., Repovš, D.: Splitting along a submanifold pair.$K$-theory (to appear). MR 2456107
Reference: [18] Medrano, S. Lopez de: Involutions on Manifolds.Springer Berlin-Heidelberg-New York (1971). MR 0298698
Reference: [19] Muranov, Yu. V.: Splitting problem.Trudi MIRAN 212 (1996), 123-146 Russian English transl. Proc. Steklov Inst. Math. 212 (1996), 115-137. Zbl 0898.57014, MR 1635031
Reference: [20] Muranov, Yu. V., Jimenez, R.: Transfer maps for triples of manifolds.Matem. Zametki 79 (2006), 420-433 Russian English translation Math. Notes 79 (2006), 387-398. MR 2251365
Reference: [21] Muranov, Yu. V., Kharshiladze, A. F.: Browder-Livesay groups of abelian 2-groups.Mat. Sb. 181 (1990), 1061-1098 Russian English transl. Math. USSR Sb. 70 (1991), 499-540. Zbl 0732.55003, MR 1076143
Reference: [22] Muranov, Yu. V., Repovš, D., Jimenez, R.: A spectral sequence in surgery theory and manifolds with filtrations.Trudy MMO (2006), 67 294-325 Russian English transl. Trans. Mosc. Math. Soc. 2006 (2006), 261-288. MR 2301596
Reference: [23] Muranov, Yu. V., Repovš, D., Spaggiari, F.: Surgery on triples of manifolds.Mat. Sb. 194 (2003), 139-160 Russian English transl. Sb. Math. 194 (2003), 1251-1271. MR 2034535
Reference: [24] Ranicki, A. A.: The total surgery obstruction.Lect. Notes Math. 763 (1979), 275-316. Zbl 0428.57012, MR 0561227, 10.1007/BFb0088091
Reference: [25] Ranicki, A. A.: Exact Sequences in the Algebraic Theory of Surgery. Math. Notes 26.Princeton Univ. Press Princeton (1981). MR 0620795
Reference: [26] Ranicki, A. A.: The $L$-theory of twisted quadratic extensions.Can. J. Math. (1987), 39 245-364. Zbl 0635.57017, MR 0899842, 10.4153/CJM-1987-017-x
Reference: [27] Ranicki, A. A.: Algebraic $L$-Theory and Topological Manifolds. Cambridge Tracts in Math. 102.Cambridge University Press Cambridge (1992). MR 1211640
Reference: [28] Switzer, R.: Algebraic Topology--Homotopy and Homology. Grund. Math. Wiss. 212.Springer Berlin-Heidelberg-New York (1975). MR 0385836
Reference: [29] Wall, C. T. C.: Surgery on Compact Manifolds.Academic Press London-New York (1970), Second Edition A. A. Ranicki Am. Math. Soc. Providence, 1999. Zbl 0219.57024, MR 0431216
Reference: [30] Wall, C. T. C.: Formulae for surgery obstructions.Topology 15 (1976), 182-210. corrigendum ibid. 16 (1977), 495-496. Zbl 0377.57006, MR 0488092
Reference: [31] Wall, C. T. C.: Classification of hermitian forms. VI. Group rings.Ann. Math. 103 (1976), 1-80. Zbl 0328.18006, MR 0432737, 10.2307/1971019
Reference: [32] Weinberger, S.: The Topological Classification of Stratified Spaces.The University of Chicago Press Chicago--London (1994). Zbl 0826.57001, MR 1308714
.

Files

Files Size Format View
CzechMathJ_59-2009-2_18.pdf 327.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo