Previous |  Up |  Next

Article

Title: The $k$-domatic number of a graph (English)
Author: Kämmerling, Karsten
Author: Volkmann, Lutz
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 59
Issue: 2
Year: 2009
Pages: 539-550
Summary lang: English
.
Category: math
.
Summary: Let $k$ be a positive integer, and let $G$ be a simple graph with vertex set $V(G)$. A {\it $k$-dominating set} of the graph $G$ is a subset $D$ of $V(G)$ such that every vertex of $V(G)-D$ is adjacent to at least $k$ vertices in $D$. A {\it $k$-domatic partition} of $G$ is a partition of $V(G)$ into $k$-dominating sets. The maximum number of dominating sets in a $k$-domatic partition of $G$ is called the {\it $k$-domatic number} $d_k(G)$. \endgraf In this paper, we present upper and lower bounds for the $k$-domatic number, and we establish Nordhaus-Gaddum-type results. Some of our results extend those for the classical domatic number $d(G)=d_1(G)$. (English)
Keyword: domination
Keyword: $k$-domination
Keyword: $k$-domatic number
MSC: 05C69
idZBL: Zbl 1224.05372
idMR: MR2532389
.
Date available: 2010-07-20T15:23:00Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140496
.
Reference: [1] Cockayne, E. J., Hedetniemi, S. T.: Towards a theory of domination in graphs.Networks 7 (1977), 247-261. MR 0483788, 10.1002/net.3230070305
Reference: [2] Fink, J. F., Jacobson, M. S.: $n$-domination in graphs.Graph Theory with Applications to Algorithms and Computer Science. John Wiley and Sons, New York (1985) 282-300. Zbl 0573.05049, MR 0812671
Reference: [3] Fink, J. F., Jacobson, M. S.: On $n$-domination, $n$-dependence and forbidden subgraphs.Graph Theory with Applications to Algorithms and Computer Science. John Wiley and Sons, New York (1985) 301-311. Zbl 0573.05050, MR 0812672
Reference: [4] Haynes, T. W., Hedetniemi, S. T., Slater, P. J.: Fundamentals of Domination in Graphs.Marcel Dekker, New York (1998) 233-269. Zbl 0890.05002, MR 1605684
Reference: [5] Haynes, T. W., Hedetniemi, S. T., (eds.), P. J. Slater: Domination in Graphs: Advanced Topics.Marcel Dekker, New York (1998). Zbl 0883.00011, MR 1605685
Reference: [6] Zelinka, B.: Domatic number and degrees of vertices of a graph.Math. Slovaca 33 (1983) 145-147. Zbl 0688.05066, MR 0699083
Reference: [7] Zelinka, B.: Domatic numbers of graphs and their variants: A survey.Marcel Dekker, New York (1998), 351-374. Zbl 0894.05026, MR 1605698
Reference: [8] Zelinka, B.: On k-ply domatic numbers of graphs.Math. Slovaca 34 (1984) 313-318. Zbl 0602.05039, MR 0756989
.

Files

Files Size Format View
CzechMathJ_59-2009-2_17.pdf 254.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo