Previous |  Up |  Next

Article

Title: On the $2k$-th power mean of $\frac {L'}L(1,\chi )$ with the weight of Gauss sums (English)
Author: Ren, Dongmei
Author: Yi, Yuan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 59
Issue: 3
Year: 2009
Pages: 781-789
Summary lang: English
.
Category: math
.
Summary: The main purpose of this paper is to study the hybrid mean value of $\frac {L'}L(1,\chi )$ and Gauss sums by using the estimates for trigonometric sums as well as the analytic method. An asymptotic formula for the hybrid mean value $\sum _{\chi \neq \chi _0} |\tau (\chi )| |\frac {L'}L(1,\chi )|^{2k}$ of $\frac {L'}L$ and Gauss sums will be proved using analytic methods and estimates for trigonometric sums. (English)
Keyword: Dirichlet L-function
Keyword: Gauss sums
Keyword: asymptotic formula
MSC: 11L07
MSC: 11M20
idZBL: Zbl 1204.11140
idMR: MR2545656
.
Date available: 2010-07-20T15:39:54Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140516
.
Reference: [1] Apostol, Tom M.: Introduction to Analytic Number Theory.Springer-Verlag, New York (1976), 160-162. Zbl 0335.10001, MR 0434929
Reference: [2] Chengdong, Pan, Chengbiao, Pan: Element of the Analytic Number Theory.Science Press, Beijing (1991), 243-248.
Reference: [3] Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory.Springer-Verlag, New York (1982), 88-91. Zbl 0482.10001, MR 0661047
Reference: [4] Yuan, Yi, Wenpeng, Zhang: On the first power mean of Dirichlet L-functions with the weight of Gauss sums.Journal of Systems Science and Mathematical Sciences 20 (2000), 346-351. MR 1790030
Reference: [5] Yuan, Yi, Wenpeng, Zhang: On the $2k$-th Power mean of Dirichlet L-function with the weight of Gauss sums.Advances in Mathematics 31 (2002), 517-526. MR 1959549
Reference: [6] Davenport, H.: Multiplicative Number Theory.Springer-Verlag, New York (1980). Zbl 0453.10002, MR 0606931
Reference: [7] Wenpeng, Zhang: A new mean value formula of Dirichlet's L-function.Science in China (Series A) 35 (1992), 1173-1179. MR 1223064
Reference: [8] Huaning, Liu, Xiaobeng, Zhang: On the mean value of $\frac{L'}L(1,\chi)$.Journal of Mathematical Analysis and Applications 320 (2006), 562-577. MR 2225976
Reference: [9] Siegel, C. L.: Über die Klassenzahl quadratischer Zahlkörper.Acta. Arith. 1 (1935), 83-86. Zbl 0011.00903, 10.4064/aa-1-1-83-86
Reference: [10] Chengdong, Pan, Chengbiao, Pan: The Elementary Number Theory.Peking University Press, Beijing (2003).
.

Files

Files Size Format View
CzechMathJ_59-2009-3_17.pdf 257.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo