Title:
|
Two valued measure and summability of double sequences (English) |
Author:
|
Das, Pratulananda |
Author:
|
Bhunia, Santanu |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
59 |
Issue:
|
4 |
Year:
|
2009 |
Pages:
|
1141-1155 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper, following the methods of Connor \cite {connor}, we extend the idea of statistical convergence of a double sequence (studied by Muresaleen and Edely \cite {moe}) to $\mu $-statistical convergence and convergence in $\mu $-density using a two valued measure $\mu $. We also apply the same methods to extend the ideas of divergence and Cauchy criteria for double sequences. We then introduce a property of the measure $\mu $ called the (APO$_2$) condition, inspired by the (APO) condition of Connor \cite {jc}. We mainly investigate the interrelationships between the two types of convergence, divergence and Cauchy criteria and ultimately show that they become equivalent if and only if the measure $\mu $ has the condition (APO$_2$). (English) |
Keyword:
|
double sequences |
Keyword:
|
$\mu $-statistical convergence |
Keyword:
|
divergence and Cauchy criteria |
Keyword:
|
convergence |
Keyword:
|
divergence and Cauchy criteria in $\mu $-density |
Keyword:
|
condition (APO$_2)$ |
MSC:
|
40A05 |
MSC:
|
40A30 |
MSC:
|
40B05 |
idZBL:
|
Zbl 1224.40009 |
idMR:
|
MR2563584 |
. |
Date available:
|
2010-07-20T16:09:48Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140543 |
. |
Reference:
|
[1] Balcerzak, M., Dems, K.: Some types of convergence and related Baire systems.Real Anal. Exchange 30 (2004), 267-276. MR 2127531, 10.14321/realanalexch.30.1.0267 |
Reference:
|
[2] Connor, J.: Two valued measure and summability.Analysis 10 (1990), 373-385. MR 1085803, 10.1524/anly.1990.10.4.373 |
Reference:
|
[3] Connor, J.: $R$-type summability methods, Cauchy criterion, $P$-sets and statistical convergence.Proc. Amer. Math. Soc. 115 (1992), 319-327. MR 1095221 |
Reference:
|
[4] Connor, J., Fridy, J. A., Orhan, C.: Core equality results for sequences.J. Math. Anal. Appl. 321 (2006), 515-523. Zbl 1092.40001, MR 2241135, 10.1016/j.jmaa.2005.07.067 |
Reference:
|
[5] Das, P., Malik, P.: On the statistical and $I$ variation of double sequences.Real Anal. Exchange 33 (2008), 351-364. MR 2458252, 10.14321/realanalexch.33.2.0351 |
Reference:
|
[6] Das, P., Kostyrko, P., Wilczyński, W., Malik, P.: $I$ and $I^{*}$-convergence of double sequences.Math. Slovaca 58 (2008), 605-620. Zbl 1199.40026, MR 2434680, 10.2478/s12175-008-0096-x |
Reference:
|
[7] Dems, K.: On $I$-Cauchy sequences.Real Anal. Exchange 30 (2004), 123-128. MR 2126799 |
Reference:
|
[8] Fast, H.: Sur la convergence statistique.Colloq. Math. 2 (1951), 241-244. Zbl 0044.33605, MR 0048548, 10.4064/cm-2-3-4-241-244 |
Reference:
|
[9] Fridy, J. A.: On statistical convergence.Analysis 5 (1985), 301-313. Zbl 0588.40001, MR 0816582, 10.1524/anly.1985.5.4.301 |
Reference:
|
[10] Kostyrko, P., Šalát, T., Wilczyński, W.: $I$-Convergence.Real Anal. Exchange 26 (2000/2001), 669-686. MR 1844385 |
Reference:
|
[11] Móricz, F.: Statistical convergence of multiple sequences.Arch. Math. 81 (2003), 82-89. MR 2002719, 10.1007/s00013-003-0506-9 |
Reference:
|
[12] Muresaleen, Edely, Osama H. H.: Statistical convergence of double sequences.J. Math. Anal. Appl. 288 (2003), 223-231. MR 2019757, 10.1016/j.jmaa.2003.08.004 |
Reference:
|
[13] Nuray, F., Ruckle, W. H.: Generalized statistical convergence and convergence free spaces.J. Math. Anal. Appl. 245 (2000), 513-527. Zbl 0955.40001, MR 1758553, 10.1006/jmaa.2000.6778 |
Reference:
|
[14] Pringsheim, A.: Zur Theorie der zweifach unendlichen Zahlenfolgen.Math. Ann. 53 (1900), 289-321. MR 1511092, 10.1007/BF01448977 |
Reference:
|
[15] Savas, E., Muresaleen: {On statistically convergent double sequences of fuzzy numbers}.Information Sciences 162 (2004), 183-192. MR 2076238, 10.1016/j.ins.2003.09.005 |
Reference:
|
[16] Šalát, T.: On statistically convergent sequences of real numbers.Math. Slovaca 30 (1980), 139-150. MR 0587239 |
Reference:
|
[17] Schoenberg, I. J.: The integrability of certain functions and related summability methods.Amer. Math. Monthly. 66 (1959), 361-375. Zbl 0089.04002, MR 0104946, 10.2307/2308747 |
. |