Previous |  Up |  Next

Article

Title: Two valued measure and summability of double sequences (English)
Author: Das, Pratulananda
Author: Bhunia, Santanu
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 59
Issue: 4
Year: 2009
Pages: 1141-1155
Summary lang: English
.
Category: math
.
Summary: In this paper, following the methods of Connor \cite {connor}, we extend the idea of statistical convergence of a double sequence (studied by Muresaleen and Edely \cite {moe}) to $\mu $-statistical convergence and convergence in $\mu $-density using a two valued measure $\mu $. We also apply the same methods to extend the ideas of divergence and Cauchy criteria for double sequences. We then introduce a property of the measure $\mu $ called the (APO$_2$) condition, inspired by the (APO) condition of Connor \cite {jc}. We mainly investigate the interrelationships between the two types of convergence, divergence and Cauchy criteria and ultimately show that they become equivalent if and only if the measure $\mu $ has the condition (APO$_2$). (English)
Keyword: double sequences
Keyword: $\mu $-statistical convergence
Keyword: divergence and Cauchy criteria
Keyword: convergence
Keyword: divergence and Cauchy criteria in $\mu $-density
Keyword: condition (APO$_2)$
MSC: 40A05
MSC: 40A30
MSC: 40B05
idZBL: Zbl 1224.40009
idMR: MR2563584
.
Date available: 2010-07-20T16:09:48Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140543
.
Reference: [1] Balcerzak, M., Dems, K.: Some types of convergence and related Baire systems.Real Anal. Exchange 30 (2004), 267-276. MR 2127531, 10.14321/realanalexch.30.1.0267
Reference: [2] Connor, J.: Two valued measure and summability.Analysis 10 (1990), 373-385. MR 1085803, 10.1524/anly.1990.10.4.373
Reference: [3] Connor, J.: $R$-type summability methods, Cauchy criterion, $P$-sets and statistical convergence.Proc. Amer. Math. Soc. 115 (1992), 319-327. MR 1095221
Reference: [4] Connor, J., Fridy, J. A., Orhan, C.: Core equality results for sequences.J. Math. Anal. Appl. 321 (2006), 515-523. Zbl 1092.40001, MR 2241135, 10.1016/j.jmaa.2005.07.067
Reference: [5] Das, P., Malik, P.: On the statistical and $I$ variation of double sequences.Real Anal. Exchange 33 (2008), 351-364. MR 2458252, 10.14321/realanalexch.33.2.0351
Reference: [6] Das, P., Kostyrko, P., Wilczyński, W., Malik, P.: $I$ and $I^{*}$-convergence of double sequences.Math. Slovaca 58 (2008), 605-620. Zbl 1199.40026, MR 2434680, 10.2478/s12175-008-0096-x
Reference: [7] Dems, K.: On $I$-Cauchy sequences.Real Anal. Exchange 30 (2004), 123-128. MR 2126799
Reference: [8] Fast, H.: Sur la convergence statistique.Colloq. Math. 2 (1951), 241-244. Zbl 0044.33605, MR 0048548, 10.4064/cm-2-3-4-241-244
Reference: [9] Fridy, J. A.: On statistical convergence.Analysis 5 (1985), 301-313. Zbl 0588.40001, MR 0816582, 10.1524/anly.1985.5.4.301
Reference: [10] Kostyrko, P., Šalát, T., Wilczyński, W.: $I$-Convergence.Real Anal. Exchange 26 (2000/2001), 669-686. MR 1844385
Reference: [11] Móricz, F.: Statistical convergence of multiple sequences.Arch. Math. 81 (2003), 82-89. MR 2002719, 10.1007/s00013-003-0506-9
Reference: [12] Muresaleen, Edely, Osama H. H.: Statistical convergence of double sequences.J. Math. Anal. Appl. 288 (2003), 223-231. MR 2019757, 10.1016/j.jmaa.2003.08.004
Reference: [13] Nuray, F., Ruckle, W. H.: Generalized statistical convergence and convergence free spaces.J. Math. Anal. Appl. 245 (2000), 513-527. Zbl 0955.40001, MR 1758553, 10.1006/jmaa.2000.6778
Reference: [14] Pringsheim, A.: Zur Theorie der zweifach unendlichen Zahlenfolgen.Math. Ann. 53 (1900), 289-321. MR 1511092, 10.1007/BF01448977
Reference: [15] Savas, E., Muresaleen: {On statistically convergent double sequences of fuzzy numbers}.Information Sciences 162 (2004), 183-192. MR 2076238, 10.1016/j.ins.2003.09.005
Reference: [16] Šalát, T.: On statistically convergent sequences of real numbers.Math. Slovaca 30 (1980), 139-150. MR 0587239
Reference: [17] Schoenberg, I. J.: The integrability of certain functions and related summability methods.Amer. Math. Monthly. 66 (1959), 361-375. Zbl 0089.04002, MR 0104946, 10.2307/2308747
.

Files

Files Size Format View
CzechMathJ_59-2009-4_22.pdf 302.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo