Previous |  Up |  Next

Article

Title: Abstract Riemann integrability and measurability (English)
Author: de Amo, E.
Author: del Campo, R.
Author: Carrillo, M. Díaz
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 59
Issue: 4
Year: 2009
Pages: 1123-1139
Summary lang: English
.
Category: math
.
Summary: We prove that the spectral sets of any positive abstract Riemann integrable function are measurable but (at most) a countable amount of them. In addition, the integral of such a function can be computed as an improper classical Riemann integral of the measures of its spectral sets under some weak continuity conditions which in fact characterize the integral representation. (English)
Keyword: finitely additive integration
Keyword: localized convergence
Keyword: integral representation
Keyword: weak continuity conditions
Keyword: horizontal integration
MSC: 26A42
MSC: 28C05
idZBL: Zbl 1224.28030
idMR: MR2563583
.
Date available: 2010-07-20T16:08:48Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140542
.
Reference: [1] Amo, E. de, Campo, R. del, Carrillo, M. Díaz: Absolute continuity theorems for abstract Riemann integration.Czech. Math. J. 57 (2007), 793-807. MR 2356281, 10.1007/s10587-007-0076-2
Reference: [2] Amo, E. de, Carrillo, M. Díaz: Local and improper Daniell-Loomis integrals.Rend. Circ. Mat. Palermo 54 (2005), 329-342. MR 2210936, 10.1007/BF02874940
Reference: [3] Anger, B., Portenier, C.: Radon Integrals.Progress in Math. Vol. 103, Birkhäuser, Boston (1992). Zbl 0766.28003, MR 1138722
Reference: [4] Aumann, G.: Integralerweiterungen mittels Normen.Arch. Math. 3 (1952), 441-450. Zbl 0048.03703, MR 0054693, 10.1007/BF01900560
Reference: [5] Guerrero, P. Bobillo, Carrillo, M. Díaz: Fonctions fortement-mesurables et mesurables par rapport a un systeme de Loomis.Bull. Soc. Roy. Sci. Ličge 55 (1987), 467-471. MR 0859793
Reference: [6] Burrill, C. W.: Measure, Integration and Probability.McGraw-Hill (1972). Zbl 0248.28001, MR 0457657
Reference: [7] Choquet, G.: Theory of capacities.Ann. Inst. Fourier, Grenoble 5 (1953/54), 131-295. MR 0080760, 10.5802/aif.53
Reference: [8] Daniell, P. J.: A general form of integral.Ann. of Math. 19 (1917/18), 279-294 JFM 46.0395.01. 10.2307/1967495
Reference: [9] Denneberg, D.: Non-Additive Measure and Integral.Kluwer (1994). Zbl 0826.28002, MR 1320048
Reference: [10] Carrillo, M. Díaz, Günzler, H.: Abstract Daniell-Loomis spaces.Bull. Austral. Math. Soc. 53 (1996), 135-142. MR 1371921, 10.1017/S0004972700016804
Reference: [11] Carrillo, M. Díaz, Günzler, H.: Daniell-Loomis integrals.Rocky Mount. J. Math. 27 (1997), 1075-1087. MR 1627666
Reference: [12] Carrillo, M. Díaz, Günzler, H.: Local integral metrics and Daniell-Loomis integrals.Bull. Austral. Math. Soc. 48 (1993), 411-426. MR 1248045, 10.1017/S0004972700015872
Reference: [13] Carrillo, M. Díaz, Rivas, P. Muñoz: Finitely additive integration: integral extension with local-convergence.Ann. Sci. Math. Québec 17 (1993), 145-154. MR 1259371
Reference: [14] Carrillo, M. Díaz, Rivas, P. Muñoz: Positive linear functionals and improper integration.Ann. Sci. Math. Québec 18 (1994), 149-156. MR 1311751
Reference: [15] Dunford, N., Schwartz, J. T.: Linear Operartors, part I, General Theory.Interscience, New-York (1957). MR 1009162
Reference: [16] Frink, O.: Jordan measure and Riemann integration.Ann. of Math. 34 (1933), 518-526. Zbl 0007.15501, MR 1503121, 10.2307/1968175
Reference: [17] Greco, G.: Sulla reppresentazione di funzionali mediante integrali.Rend. Sem. Mat. Padova 66 (1982), 21-42. MR 0664569
Reference: [18] Günzler, H.: Integration.Bibliogr. Institut, Mannheim (1985). MR 0802205
Reference: [19] Günzler, H.: Linear Functionals which are Integrals.Rend. Sem. Mat. Fis. Milano 43 (1973), 167-176. MR 0354987, 10.1007/BF02924845
Reference: [20] Kindler, J.: A Mazur-Orlicz theorem for submodular set functions.Journ. Math. Analysis Appl. 120 (1986), 533-564. MR 0864770, 10.1016/0022-247X(86)90175-7
Reference: [21] König, H.: Measure and Integration.An advanced course in basic procedures and applications. Springer (1997). MR 1633615
Reference: [22] Loomis, L. H.: Linear functionals and content.Amer. J. Math. 76 (1954), 168-182. Zbl 0055.10101, MR 0060145, 10.2307/2372407
Reference: [23] Luxemburg, W. A. J.: Integration with respect to finitely additive measures.Stud. Econ., Theory 2 (1991), 109-150. Zbl 0771.28004, MR 1307422, 10.1007/978-3-642-58199-1_6
Reference: [24] Maharam, D.: Jordan fields and improper integrals.J. Math. Anal. and Appl. 133 (1988), 163-194. Zbl 0667.28001, MR 0949326, 10.1016/0022-247X(88)90373-3
Reference: [25] Pfeffer, W. F.: Integrals and Measures.Dekker, New-York (1977). Zbl 0362.28004, MR 0460580
Reference: [26] Ridder, J.: Over de Integraldefinities van Riemann en Lebesgue.Christiann Huygens 4 (1925/26), 246-250 JFM 51.0200.05 and correction, ibid. {\it 5} (1927), 205 JFM 53.0208.03.
Reference: [27] Schäfke, F. W.: Integrationstheorie I.J. Reine Angew. Math. 244 (1970), 154-176. MR 0271300
Reference: [28] Schäfke, F. W.: Lokale Integralnormen and verallgemeinerte uneigentlich Riemann-Stiltjes-Integrals.J. Reine Angew. Math. 289 (1977), 118-134. MR 0453968
Reference: [29] Topsøe, F.: On constructions of measures.Proceedings of the Conference on Topology and Measure I, Zinnowitz, 1974, Part 2, 343-381, Ernst-Moritz-Arndt Univ., Greifswald, 1978.
.

Files

Files Size Format View
CzechMathJ_59-2009-4_21.pdf 304.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo