Previous |  Up |  Next

Article

Title: Generalized Jordan derivations associated with Hochschild 2-cocycles of triangular algebras (English)
Author: Majieed, Asia
Author: Zhou, Jiren
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 60
Issue: 1
Year: 2010
Pages: 211-219
Summary lang: English
.
Category: math
.
Summary: In this paper, we investigate a new type of generalized derivations associated with Hochschild 2-cocycles which is introduced by A.Nakajima (Turk.\ J.\ Math.\ 30 (2006), 403--411). We show that if $\mathcal U$ is a triangular algebra, then every generalized Jordan derivation of above type from $\mathcal U$ into itself is a generalized derivation. (English)
Keyword: generalized Jordan derivation
Keyword: generalized derivation
Keyword: Hochschild 2-cocycle
Keyword: triangular algebra
MSC: 47B47
MSC: 47L35
idZBL: Zbl 1224.16096
idMR: MR2595084
.
Date available: 2010-07-20T16:28:13Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140563
.
Reference: [1] Benkovič, D., Eremita, D.: Commuting traces and commutativity preserving maps on triangular algebras.J. Algebra 280 (2004), 797-824. MR 2090065, 10.1016/j.jalgebra.2004.06.019
Reference: [2] Benkovič, D.: Jordan derivations and antiderivations on triangular matrices.Linear Algebra Appl. 397 (2005), 235-244. MR 2116460
Reference: [3] Brešar, M.: Jordan derivations on semiprime rings.Proc. Amer. Math. Soc. 104 (1988), 1103-1106. MR 0929422, 10.1090/S0002-9939-1988-0929422-1
Reference: [4] Davidson, K.: Nest Algebras.Pitman Research Notes in Math. 191, Longman, London (1988). Zbl 0669.47024, MR 0972978
Reference: [5] Hou, J. C., Qi, X. F.: Generalized Jordan derivation on nest algebras.Linear Algebra Appl. 430 (2009), 1479-1485. Zbl 1155.47059, MR 2490690
Reference: [6] Herstein, I. N.: Jordan derivations of prime rings.Proc. Amer. Math. Soc. 8 (1958), 1104-1110. Zbl 0216.07202, MR 0095864, 10.1090/S0002-9939-1957-0095864-2
Reference: [7] Lu, F. Y.: The Jordan structure of CSL algebras.Stud. Math. 190 (2009), 283-299. Zbl 1156.47058, MR 2572431, 10.4064/sm190-3-3
Reference: [8] Nakajima, A.: Note on generalized Jordan derivation associate with Hochschild 2-cocycles of rings.Turk. J. Math. 30 (2006), 403-411. MR 2270836
Reference: [9] Zhang, J. H.: Jordan derivations of nest algebras.Acta Math. Sinica 41 (1998), 205-212. MR 1612539
Reference: [10] Zhang, J. H., Yu, W.: Jordan derivations of triangular algebras.Linear Algebra Appl. 419 (2006), 251-255. Zbl 1103.47026, MR 2263119, 10.1016/j.laa.2006.04.015
.

Files

Files Size Format View
CzechMathJ_60-2010-1_18.pdf 214.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo