Previous |  Up |  Next

Article

Keywords:
intuitionistic $I$-fuzzy topological space; intuitionistic fuzzy point; intuitionistic $I$-fuzzy quasi-coincident neighborhood space; fuzzifying topology; $I$-fuzzy topology
Summary:
The main purpose of this paper is to introduce the concept of intuitionistic ${\rm I}$-fuzzy quasi-coincident neighborhood systems of intuitiostic fuzzy points. The relation between the category of intuitionistic $I$-fuzzy topological spaces and the category of intuitionistic $I$-fuzzy quasi-coincident neighborhood spaces are studied. By using fuzzifying topology, the notion of generated intuitionistic $I$-fuzzy topology is proposed, and the connections among generated intuitionistic $I$-fuzzy topological spaces, fuzzifying topological spaces and $I$-fuzzy topological spaces are discussed. Finally, the properties of the operators ${\rm I}\omega $, $\iota $ are obtained.
References:
[1] Atanassov, K. T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20 (1986), 87-96. MR 0852871 | Zbl 0631.03040
[2] Atanassov, K. T.: Intuitionistic Fuzzy Sets. Springer Heidelberg (1999). MR 1718470 | Zbl 0939.03057
[3] Birkhoff, G.: Lattice Theory (third revised edition). Am. Math. Soc. Colloquium Pub. 25 Providence (1967). MR 0227053
[4] Chang, C. L.: Fuzzy topological spaces. J. Math. Anal. Appl. 24 (1968), 182-190. DOI 10.1016/0022-247X(68)90057-7 | MR 0236859 | Zbl 0167.51001
[5] Çoker, D.: An introduction to intuitionistic fuzzy topological space. Fuzzy Sets Syst. 88 (1997), 81-89. MR 1449497
[6] Çoker, D., Demirci, M.: On intuitionistic fuzzy points. Notes IFS 1-2 (1995), 79-84. MR 1417217
[7] Çoker, D., Demirci, M.: An introduction to intuitionistic fuzzy topological space in Šostak's sense. BUSEFAL 67 (1996), 61-66.
[8] Çoker, D., Demirci, M.: On fuzzy inclusion in the intuitionistic sense. J. Fuzzy Math. 4 (1996), 701-714. MR 1410641
[9] Hanafy, I. M.: Completely continuous functions in intuitionistic fuzzy topological spaces. Czech Math. J. 53(158) (2003), 793-803. DOI 10.1023/B:CMAJ.0000024523.64828.31 | MR 2018831 | Zbl 1080.54503
[10] Höhle, U., Rodabaugh, S. E., eds.: Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory. The Handbooks of Fuzzy Sets Series, Vol. 3. Kluwer Academic Publishers Dordrecht (1999). MR 1788899
[11] Fang, Jin-ming: $I$-FTOP is isomorphic to $I$-{\bf FQN} and $I$-{\bf AITOP}. Fuzzy Sets Syst. 147 (2004), 317-325. MR 2089295
[12] Fang, Jinming, Yue, Yueli: Base and subbase in $I$-fuzzy topological spaces. J. Math. Res. Expo. 26 (2006), 89-95. Zbl 1101.54005
[13] Lee, S. J., Lee, E. P.: On the category of intuitionistic fuzzy topological spaces. Bull. Korean Math. Soc. 37 (2000), 63-76. MR 1752195
[14] Lupiáñez, F. G.: Quasicoincidence for intuitionistic fuzzy points. Int. J. Math. Math. Sci. 10 (2005), 1539-1542. DOI 10.1155/IJMMS.2005.1539 | MR 2177859
[15] Lupiáñez, F. G.: Covering properties in intuitionistic fuzzy topological spaces. Kybernetes 36 (2007), 749-753. DOI 10.1108/03684920710749811 | MR 2371364
[16] Park, J. H.: Intuitionistic fuzzy metric spaces. Chaos Solitons Fractals 22 (2004), 1039-1046. DOI 10.1016/j.chaos.2004.02.051 | MR 2078831 | Zbl 1060.54010
[17] Ramadan, A. A., Abbas, S. E., El-Latif, A. A. Abd: Compactness in intuitionistic fuzzy topological spaces. Int. J. Math. Math. Sci. 1 (2005), 19-32. MR 2146013
[18] Rodabaugh, S. E.: Powerset operator foundations for Poslat fuzzy set theories and topologies. Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory. The handbooks of Fuzzy Sets Series, Vol. 3 Kluwer Academic Publishers Dordrecht (1999), 91-116. MR 1788901 | Zbl 0974.03047
[19] Šostak, A.: On a fuzzy topological structure. Rend. Circ. Math. Palermo (Suppl. Ser. II) 11 (1985), 89-103. MR 0897975
[20] Xu, Zeshui, Yager, R. R.: Some geometric aggregation operators based on intuitionistic fuzzy sets. Int. J. Gen. Syst. 35 (2006), 417-433. DOI 10.1080/03081070600574353 | MR 2243887 | Zbl 1113.54003
[21] Ying, Ming-sheng: A new approach for fuzzy topology (I). Fuzzy Sets Syst. 9 (1991), 303-321. MR 1095905
[22] Yue, Yue-li, Fang, Jin-ming: On induced $I$-fuzzy topological spaces. J. Math. Res. Exp. 25 (2005), 665-670 Chinese. MR 2184241
Partner of
EuDML logo