Title:
|
Intuitionistic $I$-fuzzy topological spaces (English) |
Author:
|
Yan, Cong-hua |
Author:
|
Wang, Xiao-ke |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
60 |
Issue:
|
1 |
Year:
|
2010 |
Pages:
|
233-252 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The main purpose of this paper is to introduce the concept of intuitionistic ${\rm I}$-fuzzy quasi-coincident neighborhood systems of intuitiostic fuzzy points. The relation between the category of intuitionistic $I$-fuzzy topological spaces and the category of intuitionistic $I$-fuzzy quasi-coincident neighborhood spaces are studied. By using fuzzifying topology, the notion of generated intuitionistic $I$-fuzzy topology is proposed, and the connections among generated intuitionistic $I$-fuzzy topological spaces, fuzzifying topological spaces and $I$-fuzzy topological spaces are discussed. Finally, the properties of the operators ${\rm I}\omega $, $\iota $ are obtained. (English) |
Keyword:
|
intuitionistic $I$-fuzzy topological space |
Keyword:
|
intuitionistic fuzzy point |
Keyword:
|
intuitionistic $I$-fuzzy quasi-coincident neighborhood space |
Keyword:
|
fuzzifying topology |
Keyword:
|
$I$-fuzzy topology |
MSC:
|
54A40 |
MSC:
|
54E15 |
idZBL:
|
Zbl 1224.54022 |
idMR:
|
MR2595086 |
. |
Date available:
|
2010-07-20T16:32:11Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140565 |
. |
Reference:
|
[1] Atanassov, K. T.: Intuitionistic fuzzy sets.Fuzzy Sets Syst. 20 (1986), 87-96. Zbl 0631.03040, MR 0852871 |
Reference:
|
[2] Atanassov, K. T.: Intuitionistic Fuzzy Sets.Springer Heidelberg (1999). Zbl 0939.03057, MR 1718470 |
Reference:
|
[3] Birkhoff, G.: Lattice Theory (third revised edition).Am. Math. Soc. Colloquium Pub. 25 Providence (1967). MR 0227053 |
Reference:
|
[4] Chang, C. L.: Fuzzy topological spaces.J. Math. Anal. Appl. 24 (1968), 182-190. Zbl 0167.51001, MR 0236859, 10.1016/0022-247X(68)90057-7 |
Reference:
|
[5] Çoker, D.: An introduction to intuitionistic fuzzy topological space.Fuzzy Sets Syst. 88 (1997), 81-89. MR 1449497 |
Reference:
|
[6] Çoker, D., Demirci, M.: On intuitionistic fuzzy points.Notes IFS 1-2 (1995), 79-84. MR 1417217 |
Reference:
|
[7] Çoker, D., Demirci, M.: An introduction to intuitionistic fuzzy topological space in Šostak's sense.BUSEFAL 67 (1996), 61-66. |
Reference:
|
[8] Çoker, D., Demirci, M.: On fuzzy inclusion in the intuitionistic sense.J. Fuzzy Math. 4 (1996), 701-714. MR 1410641 |
Reference:
|
[9] Hanafy, I. M.: Completely continuous functions in intuitionistic fuzzy topological spaces.Czech Math. J. 53(158) (2003), 793-803. Zbl 1080.54503, MR 2018831, 10.1023/B:CMAJ.0000024523.64828.31 |
Reference:
|
[10] Höhle, U., Rodabaugh, S. E., eds.: Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory. The Handbooks of Fuzzy Sets Series, Vol. 3.Kluwer Academic Publishers Dordrecht (1999). MR 1788899 |
Reference:
|
[11] Fang, Jin-ming: $I$-FTOP is isomorphic to $I$-{\bf FQN} and $I$-{\bf AITOP}.Fuzzy Sets Syst. 147 (2004), 317-325. MR 2089295 |
Reference:
|
[12] Fang, Jinming, Yue, Yueli: Base and subbase in $I$-fuzzy topological spaces.J. Math. Res. Expo. 26 (2006), 89-95. Zbl 1101.54005, MR 2208585 |
Reference:
|
[13] Lee, S. J., Lee, E. P.: On the category of intuitionistic fuzzy topological spaces.Bull. Korean Math. Soc. 37 (2000), 63-76. MR 1752195 |
Reference:
|
[14] Lupiáñez, F. G.: Quasicoincidence for intuitionistic fuzzy points.Int. J. Math. Math. Sci. 10 (2005), 1539-1542. MR 2177859, 10.1155/IJMMS.2005.1539 |
Reference:
|
[15] Lupiáñez, F. G.: Covering properties in intuitionistic fuzzy topological spaces.Kybernetes 36 (2007), 749-753. MR 2371364, 10.1108/03684920710749811 |
Reference:
|
[16] Park, J. H.: Intuitionistic fuzzy metric spaces.Chaos Solitons Fractals 22 (2004), 1039-1046. Zbl 1060.54010, MR 2078831, 10.1016/j.chaos.2004.02.051 |
Reference:
|
[17] Ramadan, A. A., Abbas, S. E., El-Latif, A. A. Abd: Compactness in intuitionistic fuzzy topological spaces.Int. J. Math. Math. Sci. 1 (2005), 19-32. MR 2146013 |
Reference:
|
[18] Rodabaugh, S. E.: Powerset operator foundations for Poslat fuzzy set theories and topologies.Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory. The handbooks of Fuzzy Sets Series, Vol. 3 Kluwer Academic Publishers Dordrecht (1999), 91-116. Zbl 0974.03047, MR 1788901 |
Reference:
|
[19] Šostak, A.: On a fuzzy topological structure.Rend. Circ. Math. Palermo (Suppl. Ser. II) 11 (1985), 89-103. MR 0897975 |
Reference:
|
[20] Xu, Zeshui, Yager, R. R.: Some geometric aggregation operators based on intuitionistic fuzzy sets.Int. J. Gen. Syst. 35 (2006), 417-433. Zbl 1113.54003, MR 2243887, 10.1080/03081070600574353 |
Reference:
|
[21] Ying, Ming-sheng: A new approach for fuzzy topology (I).Fuzzy Sets Syst. 9 (1991), 303-321. MR 1095905 |
Reference:
|
[22] Yue, Yue-li, Fang, Jin-ming: On induced $I$-fuzzy topological spaces.J. Math. Res. Exp. 25 (2005), 665-670 Chinese. MR 2184241 |
. |