Previous |  Up |  Next

Article

Title: Convergence conditions for Secant-type methods (English)
Author: Argyros, Ioannis K.
Author: Hilout, Said
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 60
Issue: 1
Year: 2010
Pages: 253-272
Summary lang: English
.
Category: math
.
Summary: We provide new sufficient convergence conditions for the convergence of the secant-type methods to a locally unique solution of a nonlinear equation in a Banach space. Our new idea uses recurrent functions, and Lipschitz-type and center-Lipschitz-type instead of just Lipschitz-type conditions on the divided difference of the operator involved. It turns out that this way our error bounds are more precise than earlier ones and under our convergence hypotheses we can cover cases where earlier conditions are violated. Numerical examples are also provided. (English)
Keyword: secant method
Keyword: Banach space
Keyword: majorizing sequence
Keyword: divided difference
Keyword: Fréchet-derivative
MSC: 49M15
MSC: 65B05
MSC: 65G99
MSC: 65H10
MSC: 65N30
idZBL: Zbl 1224.65141
idMR: MR2595087
.
Date available: 2010-07-20T16:33:40Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140566
.
Reference: [1] Argyros, I. K.: Polynomial operator equations in abstract spaces and applications.St. Lucie/CRC/Lewis Publ. Mathematics series, 1998, Boca Raton, Florida, U.S.A. Zbl 0967.65070, MR 1731346
Reference: [2] Argyros, I. K.: On the Newton-Kantorovich hypothesis for solving equations.J. Comput. Appl. Math. 169 (2004), 315-332. Zbl 1055.65066, MR 2072881, 10.1016/j.cam.2004.01.029
Reference: [3] Argyros, I. K.: A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space.J. Math. Anal. Appl. 298 (2004), 374-397. Zbl 1061.47052, MR 2086964, 10.1016/j.jmaa.2004.04.008
Reference: [4] Argyros, I. K.: New sufficient convergence conditions for the Secant method.Chechoslovak Math. J. 55 (2005), 175-187. Zbl 1081.65043, MR 2121665, 10.1007/s10587-005-0013-1
Reference: [5] Argyros, I. K.: Convergence and Applications of Newton-Type Iterations.Springer-Verlag Publ., New-York (2008). Zbl 1153.65057, MR 2428779
Reference: [6] Argyros, I. K., Hilout, S.: Efficient Methods for Solving Equations and Variational Inequalities.Polimetrica Publisher (2009). MR 2424657
Reference: [7] Bosarge, W. E., Falb, P. L.: A multipoint method of third order.J. Optimiz. Th. Appl. 4 (1969), 156-166. Zbl 0172.18703, MR 0248581, 10.1007/BF00930576
Reference: [8] Chandrasekhar, S.: Radiative Transfer.Dover Publ., New-York (1960). MR 0111583
Reference: [9] Dennis, J. E.: Toward a unified convergence theory for Newton-like methods.In Nonlinear Functional Analysis and Applications (L.B. Rall, ed.), Academic Press, New York (1971), 425-472. Zbl 0276.65029, MR 0278556
Reference: [10] Hernández, M. A., Rubio, M. J., Ezquerro, J. A.: Solving a special case of conservative problems by Secant-like method.Appl. Math. Cmput. 169 (2005), 926-942. MR 2174693, 10.1016/j.amc.2004.09.070
Reference: [11] Hernández, M. A., Rubio, M. J., Ezquerro, J. A.: Secant-like methods for solving nonlinear integral equations of the Hammerstein type.J. Comput. Appl. Math. 115 (2000), 245-254. MR 1747223, 10.1016/S0377-0427(99)00116-8
Reference: [12] Huang, Z.: A note of Kantorovich theorem for Newton iteration.J. Comput. Appl. Math. 47 (1993), 211-217. MR 1237313, 10.1016/0377-0427(93)90004-U
Reference: [13] Kantorovich, L. V., Akilov, G. P.: Functional Analysis.Pergamon Press, Oxford (1982). Zbl 0484.46003, MR 0664597
Reference: [14] Laasonen, P.: Ein überquadratisch konvergenter iterativer Algorithmus.Ann. Acad. Sci. Fenn. Ser I 450 (1969), 1-10. Zbl 0193.11704, MR 0255047
Reference: [15] Ortega, J. M., Rheinboldt, W. C.: Iterative Solution of Nonlinear Equations in Several Variables.Academic Press, New York (1970). Zbl 0241.65046, MR 0273810
Reference: [16] Potra, F. A.: Sharp error bounds for a class of Newton-like methods.Libertas Mathematica 5 (1985), 71-84. Zbl 0581.47050, MR 0816258
Reference: [17] Schmidt, J. W.: Untere Fehlerschranken fur Regula-Falsi Verfahren.Period. Hungar. 9 (1978), 241-247. MR 0494896, 10.1007/BF02018090
Reference: [18] Yamamoto, T.: A convergence theorem for Newton-like methods in Banach spaces.Numer. Math. 51 (1987), 545-557. Zbl 0633.65049, MR 0910864, 10.1007/BF01400355
Reference: [19] Wolfe, M. A.: Extended iterative methods for the solution of operator equations.Numer. Math. 31 (1978), 153-174. Zbl 0375.65030, MR 0509672, 10.1007/BF01397473
.

Files

Files Size Format View
CzechMathJ_60-2010-1_21.pdf 289.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo