Article
Keywords:
generalized Dirichlet $L$-functions; mean value properties; functional equation; asymptotic formula
Summary:
Let $q\ge 3$ be an integer, let $\chi $ denote a Dirichlet character modulo $q.$ For any real number $a\ge 0$ we define the generalized Dirichlet $L$-functions $$ L(s,\chi ,a)=\sum _{n=1}^{\infty }\frac {\chi (n)}{(n+a)^s}, $$ where $s=\sigma +{\rm i} t$ with $\sigma >1$ and $t$ both real. They can be extended to all $s$ by analytic continuation. In this paper we study the mean value properties of the generalized Dirichlet $L$-functions especially for $s=1$ and $s=\frac 12+{\rm i} t$, and obtain two sharp asymptotic formulas by using the analytic method and the theory of van der Corput.
References:
[1] Berndt, B. C.:
Generalized Dirichlet series and Hecke's functional equation. Proc. Edinburgh Math. Soc. 15 (1966/67), 309-313.
MR 0225732
[3] Berndt, B. C.:
Identities involving the coefficients of a class of Dirichlet series. IV. Trans. Amer. Math. Soc. 149 (1970), 179-185.
MR 0260685 |
Zbl 0207.05504
[5] Zhang, W. P.:
On the second mean value of Dirichlet $L$-functions. Chinese Annals of Mathematics 11A (1990), 121-127.
MR 1048690
[7] Yi, Y., Zhang, W. P.:
On the $2k$-th power mean of Dirichlet $L$-functions with the weight of Gauss sums. Advances in Mathematics 31 (2002), 517-526.
MR 1959549
[9] Titchmarsh, E. C.:
The Theory of the Riemannn Zeta-function. Oxford (1951).
MR 0046485
[10] Ivic, A.:
The Riemann zeta-function. The Theory of the Riemann Zeta-Function with Applications, New York: Wiley (1985).
MR 0792089 |
Zbl 0583.10021
[11] Pan, C. D., Pan, C. B.: Elements of the Analytic Number Theory. Science Press, Beijing (1991), Chinese.