Previous |  Up |  Next

Article

Keywords:
generalized Dirichlet $L$-functions; mean value properties; functional equation; asymptotic formula
Summary:
Let $q\ge 3$ be an integer, let $\chi $ denote a Dirichlet character modulo $q.$ For any real number $a\ge 0$ we define the generalized Dirichlet $L$-functions $$ L(s,\chi ,a)=\sum _{n=1}^{\infty }\frac {\chi (n)}{(n+a)^s}, $$ where $s=\sigma +{\rm i} t$ with $\sigma >1$ and $t$ both real. They can be extended to all $s$ by analytic continuation. In this paper we study the mean value properties of the generalized Dirichlet $L$-functions especially for $s=1$ and $s=\frac 12+{\rm i} t$, and obtain two sharp asymptotic formulas by using the analytic method and the theory of van der Corput.
References:
[1] Berndt, B. C.: Generalized Dirichlet series and Hecke's functional equation. Proc. Edinburgh Math. Soc. 15 (1966/67), 309-313. MR 0225732
[2] Berndt, B. C.: Identities involving the coefficients of a class of Dirichlet series. III. Trans. Amer. Math. Soc. 146 (1969), 323-342. DOI 10.1090/S0002-9947-1969-0252330-1 | MR 0252330
[3] Berndt, B. C.: Identities involving the coefficients of a class of Dirichlet series. IV. Trans. Amer. Math. Soc. 149 (1970), 179-185. MR 0260685 | Zbl 0207.05504
[4] Heath-Brown, D. R.: An asymptotic series for the mean value of Dirichlet $L$-functions. Comment. Math. Helvetici 56 (1981), 148-161. DOI 10.1007/BF02566206 | MR 0615623 | Zbl 0457.10020
[5] Zhang, W. P.: On the second mean value of Dirichlet $L$-functions. Chinese Annals of Mathematics 11A (1990), 121-127. MR 1048690
[6] Zhang, W. P., Yi, Y., He, X. L.: On the $2k$-th power mean of Dirichlet $L$-functions with the weight of general Kloosterman sums. Journal of Number Theory 84 (2000), 199-213. DOI 10.1006/jnth.2000.2515 | MR 1795790 | Zbl 0958.11061
[7] Yi, Y., Zhang, W. P.: On the $2k$-th power mean of Dirichlet $L$-functions with the weight of Gauss sums. Advances in Mathematics 31 (2002), 517-526. MR 1959549
[8] Balasubramanian, R.: A note on Dirichlet $L$-functions. Acta Arith. 38 (1980), 273-283. DOI 10.4064/aa-38-3-273-283 | MR 0602193
[9] Titchmarsh, E. C.: The Theory of the Riemannn Zeta-function. Oxford (1951). MR 0046485
[10] Ivic, A.: The Riemann zeta-function. The Theory of the Riemann Zeta-Function with Applications, New York: Wiley (1985). MR 0792089 | Zbl 0583.10021
[11] Pan, C. D., Pan, C. B.: Elements of the Analytic Number Theory. Science Press, Beijing (1991), Chinese.
Partner of
EuDML logo