Previous |  Up |  Next

Article

Title: The (signless) Laplacian spectral radius of unicyclic and bicyclic graphs with $n$ vertices and $k$ pendant vertices (English)
Author: Liu, Muhuo
Author: Tan, Xuezhong
Author: Liu, BoLian
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 60
Issue: 3
Year: 2010
Pages: 849-867
Summary lang: English
.
Category: math
.
Summary: In this paper, the effects on the signless Laplacian spectral radius of a graph are studied when some operations, such as edge moving, edge subdividing, are applied to the graph. Moreover, the largest signless Laplacian spectral radius among the all unicyclic graphs with $n$ vertices and $k$ pendant vertices is identified. Furthermore, we determine the graphs with the largest Laplacian spectral radii among the all unicyclic graphs and bicyclic graphs with $n$ vertices and $k$ pendant vertices, respectively. (English)
Keyword: Laplacian matrix
Keyword: signless Laplacian matrix
Keyword: spectral radius
MSC: 05C50
MSC: 05C75
idZBL: Zbl 1224.05311
idMR: MR2672419
.
Date available: 2010-07-20T17:23:09Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140608
.
Reference: [1] Brualdi, R. A., Solheid, E. S.: On the spectral radius of connected graphs.Publ. Inst. Math. Beograd 39(53) (1986), 45-54. Zbl 0603.05028, MR 0869175
Reference: [2] Cardoso, D. M., Cvetković, D., Rowlinson, P., Simić, S. K.: A sharp lower bound for the least eigenvalue of the signless Laplacian of a non-bipartite graph.Linear Algebra Appl. 429 (2008), 2770-2780. MR 2455532
Reference: [3] Cvetković, D. M., Doob, M., Sachs, H.: Spectra of Graphs. Theory and Applications.VEB Deutscher Verlag der Wissenschaften Berlin (1980).
Reference: [4] Cvetković, D. M., Rowlinson, P., Simić, S.: Eigenspaces of Graphs.Cambridge University Press Cambridge (1997), 56-60. MR 1440854
Reference: [5] Cvetković, D., Rowlinson, P., Simić, S. K.: Signless Laplacians of finite graphs.Linear Algebra Appl. 423 (2007), 155-171. MR 2312332, 10.1016/j.laa.2007.01.009
Reference: [6] Geng, X. Y., Li, S. C.: The spectral radius of tricyclic graphs with $n$ vertices and $k$ pendant vertices.Linear Algebra Appl. 428 (2008), 2639-2653. MR 2416577
Reference: [7] Grossman, J. W., Kulkarni, D. M., Schochetman, I. E.: Algebraic graph theory without orientation.Linear Algebra Appl. 212-213 (1994), 289-307. Zbl 0817.05047, MR 1306983
Reference: [8] Guo, J. M.: The effect on the Laplacian spectral radius of a graph by adding or grafting edges.Linear Algebra Appl. 413 (2006), 59-71. Zbl 1082.05059, MR 2202092
Reference: [9] Guo, S. G.: The spectral radius of unicyclic and bicyclic graphs with $n$ vertices and $k$ pendant vertices.Linear Algebra Appl. 408 (2005), 78-85. Zbl 1073.05550, MR 2166856
Reference: [10] Heuvel, J. van den: Hamilton cycles and eigenvalues of graphs.Linear Algebra Appl. 226-228 (1995), 723-730. MR 1344594
Reference: [11] Li, J. S., Zhang, X.-D.: On the Laplacian eigenvalues of a graph.Linear Algebra Appl. 285 (1998), 305-307. Zbl 0931.05052, MR 1653547
Reference: [12] Li, Q., Feng, K.: On the largest eigenvalue of a graph.Acta. Math. Appl. Sinica 2 (1979), 167-175 Chinese. MR 0549045
Reference: [13] Liu, B. L.: Combinatorial Matrix Theory.Science Press Beijing (2005), Chinese.
Reference: [14] Merris, R.: Laplacian matrices of graphs: A survey.Linear Algebra Appl. 197-198 (1994), 143-176. Zbl 0802.05053, MR 1275613
Reference: [15] Pan, Y. L.: Sharp upper bounds for the Laplacian graph eigenvalues.Linear Algebra Appl. 355 (2002), 287-295. Zbl 1015.05055, MR 1930150
Reference: [16] Rojo, O., Soto, R., Rojo, H.: An always nontrivial upper bound for Laplacian graph eigenvalues.Linear Algebra Appl. 312 (2000), 155-159. Zbl 0958.05088, MR 1759329
Reference: [17] Wu, B., Xiao, E., Hong, Y.: The spectral radius of trees on $k$ pendant vertices.Linear Algebra Appl. 395 (2005), 343-349. Zbl 1057.05057, MR 2112895
Reference: [18] Zhang, X. D.: The Laplacian spectral radii of trees with degree sequences.Discrete Math. 308 (2008), 3143-3150. Zbl 1156.05038, MR 2423396, 10.1016/j.disc.2007.06.017
.

Files

Files Size Format View
CzechMathJ_60-2010-3_17.pdf 354.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo