Previous |  Up |  Next


Title: Tribonacci modulo $p^t$ (English)
Author: Klaška, Jiří
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 133
Issue: 3
Year: 2008
Pages: 267-288
Summary lang: English
Category: math
Summary: Our research was inspired by the relations between the primitive periods of sequences obtained by reducing Tribonacci sequence by a given prime modulus $p$ and by its powers $p^t$, which were deduced by M. E. Waddill. In this paper we derive similar results for the case of a Tribonacci sequence that starts with an arbitrary triple of integers. (English)
Keyword: Tribonacci
Keyword: modular periodicity
Keyword: periodic sequence
MSC: 11B39
MSC: 11B50
idZBL: Zbl 1174.11021
idMR: MR2494781
DOI: 10.21136/MB.2008.140617
Date available: 2010-07-20T17:29:32Z
Last updated: 2020-07-29
Stable URL:
Reference: [1] Elia, M.: Derived sequences, the Tribonacci recurrence and cubic forms.The Fibonacci Quarterly 39.2 (2001), 107-115. Zbl 1001.11008, MR 1829520
Reference: [2] Klaška, J.: Tribonacci modulo $2^t$ and $11^t$.(to appear) in Math. Bohem.
Reference: [3] Klaška, J.: Tribonacci partition formulas modulo $m$.Preprint (2007). MR 2591606
Reference: [4] Sun, Z.-H., Sun, Z.-W.: Fibonacci numbers and Fermat's last theorem.Acta Arith. 60 (1992), 371-388. Zbl 0725.11009, MR 1159353, 10.4064/aa-60-4-371-388
Reference: [5] Vince, A.: Period of a linear recurrence.Acta Arith. 39 (1981), 303-311. Zbl 0396.12001, MR 0640918, 10.4064/aa-39-4-303-311
Reference: [6] Waddill, M. E.: Some properties of a generalized Fibonacci sequence modulo $m$.The Fibonacci Quarterly 16 4 (Aug. 1978) 344-353. Zbl 0394.10007, MR 0514322
Reference: [7] Wall, D. D.: Fibonacci series modulo $m$.Amer. Math. Monthly 67 6 (1960), 525-532. Zbl 0101.03201, MR 0120188, 10.1080/00029890.1960.11989541


Files Size Format View
MathBohem_133-2008-3_5.pdf 324.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo