Previous |  Up |  Next

Article

Title: $G$-space of isotropic directions and $G$-spaces of $ \varphi $-scalars with $G=O( n,1,\mathbb R) $ (English)
Author: Misiak, Aleksander
Author: Stasiak, Eugeniusz
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 133
Issue: 3
Year: 2008
Pages: 289-298
Summary lang: English
.
Category: math
.
Summary: There exist exactly four homomorphisms $\varphi $ from the pseudo-orthogonal group of index one $G=O( n,1,\mathbb R) $ into the group of real numbers $\mathbb R_0.$ Thus we have four $G$-spaces of $\varphi $-scalars $( \mathbb R,G,h_{\varphi }) $ in the geometry of the group $G.$ The group $G$ operates also on the sphere $S^{n-2}$ forming a $G$-space of isotropic directions $( S^{n-2},G,\ast ) .$ In this note, we have solved the functional equation $F( A\ast q_1,A\ast q_2,\dots ,A\ast q_m) =\varphi ( A) \cdot F( q_1,q_2,\dots ,q_m) $ for given independent points $q_1,q_2,\dots ,q_m\in S^{n-2}$ with $1\leq m\leq n$ and an arbitrary matrix $A\in G$ considering each of all four homomorphisms. Thereby\ we have determined all equivariant mappings $F\colon ( S^{n-2}) ^m\rightarrow \mathbb R.$ (English)
Keyword: $G$-space
Keyword: equivariant map
Keyword: pseudo-Euclidean geometry
MSC: 53A55
idZBL: Zbl 1199.53034
idMR: MR2494782
DOI: 10.21136/MB.2008.140618
.
Date available: 2010-07-20T17:30:11Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/140618
.
Reference: [1] Aczél, J., Gołąb, S.: Functionalgleichungen der Theorie der geometrischen Objekte.P.W.N. Warszawa (1960).
Reference: [2] Bieszk, L., Stasiak, E.: Sur deux formes équivalents de la notion de $(r,s)$-orientation de la géometrié de Klein.Publ. Math. Debrecen 35 (1988), 43-50. MR 0971951
Reference: [3] Kucharzewski, M.: Über die Grundlagen der Kleinschen Geometrie.Period. Math. Hungar. 8 (1977), 83-89. Zbl 0335.50001, MR 0493695, 10.1007/BF02018051
Reference: [4] Misiak, A., Stasiak, E.: Equivariant maps between certain $G$-spaces with $G=O( n-1,1)$.Math. Bohem. 126 (2001), 555-560. Zbl 1031.53031, MR 1970258
Reference: [5] Stasiak, E.: On a certain action of the pseudoorthogonal group with index one $O( n,1,\mathbb R)$ on the sphere $S^{n-2}$.Polish Prace Naukowe P.S. 485 (1993).
Reference: [6] Stasiak, E.: Scalar concomitants of a system of vectors in pseudo-Euclidean geometry of index 1.Publ. Math. Debrecen 57 (2000), 55-69. Zbl 0966.53012, MR 1771671
.

Files

Files Size Format View
MathBohem_133-2008-3_6.pdf 252.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo