Previous |  Up |  Next

Article

Title: On vector functions of bounded convexity (English)
Author: Veselý, Libor
Author: Zajíček, Luděk
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 133
Issue: 3
Year: 2008
Pages: 321-335
Summary lang: English
.
Category: math
.
Summary: Let $X$ be a normed linear space. We investigate properties of vector functions $F\colon [a,b] \to X$ of bounded convexity. In particular, we prove that such functions coincide with the delta-convex mappings admitting a Lipschitz control function, and that convexity $K_a^b F$ is equal to the variation of $F'_+$ on $[a,b)$. As an application, we give a simple alternative proof of an unpublished result of the first author, containing an estimate of convexity of a composed mapping. (English)
Keyword: bounded convexity
Keyword: delta-convex mapping
Keyword: bounded variation
Keyword: Banach space
MSC: 26A99
MSC: 47H99
idZBL: Zbl 1199.47242
idMR: MR2494785
DOI: 10.21136/MB.2008.140621
.
Date available: 2010-07-20T17:34:34Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/140621
.
Reference: [1] Bourbaki, N.: Éléments de Mathématique IX, Livre IV: Fonctions d'une variable réelle (Théorie élémentaire).Second ed., Actualités Scientifiques et Industrielles, vol. 1074, Hermann, Paris (1958).
Reference: [2] Chistyakov, V. V.: On mappings of bounded variation.J. Dynam. Control Systems 3 (1997), 261-289. Zbl 0940.26009, MR 1449984, 10.1007/BF02465896
Reference: [3] Diestel, J., Uhl, Jr., J. J. : The Radon-Nikodým theorem for Banach space valued measures.Rocky Mountain J. Math. 6 (1976), 1-46. Zbl 0339.46031, MR 0399852, 10.1216/RMJ-1976-6-1-1
Reference: [4] Duda, J.: Curves with finite turn.Czech. Math. J. 58 (2008), 23-49. Zbl 1167.46321, MR 2402524, 10.1007/s10587-008-0003-1
Reference: [5] Duda, J.: Absolutely continuous functions with values in metric spaces.Real Anal. Exchange 32 (2006-2007), 569-581. MR 2369866
Reference: [6] Duda, J., Veselý, L., Zajíček, L.: On d.c. functions and mappings.Atti Sem. Mat. Fis. Univ. Modena 51 (2003), 111-138. Zbl 1072.46025, MR 1993883
Reference: [7] Duda, J., Zajíček, L.: Curves in Banach spaces which allow a $C^2$ parametrization or a parametrization with finite convexity.Preprint (2006), electronically available at {\it http://arxiv.org/abs/math/0603735v1}.
Reference: [8] Federer, H.: Geometric Measure Theory.Grundlehren der math. Wiss., vol. 153, Springer, New York (1969). Zbl 0176.00801, MR 0257325
Reference: [9] Hartman, P.: On functions representable as a difference of convex functions.Pacific J. Math. 9 (1959), 707-713. Zbl 0093.06401, MR 0110773, 10.2140/pjm.1959.9.707
Reference: [10] Kirchheim, B.: Rectifiable metric spaces: local structure and regularity of the Hausdorff measure.Proc. Amer. Math. Soc. 121 (1994), 113-123. Zbl 0806.28004, MR 1189747, 10.1090/S0002-9939-1994-1189747-7
Reference: [11] Konyagin, S. V., Veselý, L.: Delta-semidefinite and delta-convex quadratic forms in Banach spaces.Preprint, {\it http://arxiv.org/abs/math/0605549v3} (2007). MR 2398996
Reference: [12] Roberts, A. W., Varberg, E. D.: Functions of bounded convexity.Bull. Amer. Math. Soc. 75 (1969), 568-572. Zbl 0176.01204, MR 0239021, 10.1090/S0002-9904-1969-12244-5
Reference: [13] Roberts, A. W., Varberg, E. D.: Convex Functions.Pure and Applied Mathematics, vol. 57, Academic Press, New York-London (1973). Zbl 0271.26009, MR 0442824
Reference: [14] Veselý, L.: On the multiplicity points of monotone operators on separable Banach spaces.Comment. Math. Univ. Carolin. 27 (1986), 551-570. MR 0873628
Reference: [15] Veselý, L.: A short proof of a theorem on compositions of d.c. mappings.Proc. Amer. Math. Soc. 101 (1987), 685-686. MR 0911033, 10.2307/2046671
Reference: [16] Veselý, L.: Topological properties of monotone operators, accretive operators and metric projections.CSc Dissertation (PhD Thesis), Charles University Prague (1990).
Reference: [17] Veselý, L., Zajíček, L.: Delta-convex mappings between Banach spaces and applications.Dissertationes Math. (Rozprawy Mat.) 289 (1989), 52 pp. MR 1016045
Reference: [18] Veselý, L., Zajíček, L.: On connections between delta-convex mappings and convex operators.Proc. Edinb. Math. Soc. 49 (2006), 739-751. Zbl 1115.47048, MR 2266160, 10.1017/S0013091505000040
Reference: [19] Veselý, L., Zajíček, L.: On compositions of d.c. functions and mappings.(to appear) in J. Convex Anal. MR 1614031
.

Files

Files Size Format View
MathBohem_133-2008-3_9.pdf 293.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo