Previous |  Up |  Next

Article

Title: On a secant-like method for solving generalized equations (English)
Author: Argyros, Ioannis K.
Author: Hilout, Said
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 133
Issue: 3
Year: 2008
Pages: 313-320
Summary lang: English
.
Category: math
.
Summary: In the paper by Hilout and Piétrus (2006) a semilocal convergence analysis was given for the secant-like method to solve generalized equations using Hölder-type conditions introduced by the first author (for nonlinear equations). Here, we show that this convergence analysis can be refined under weaker hypothesis, and less computational cost. Moreover finer error estimates on the distances involved and a larger radius of convergence are obtained. (English)
Keyword: secant-like method
Keyword: generalized equations
Keyword: Aubin continuity
Keyword: radius of convergence
Keyword: divided difference
MSC: 47J25
MSC: 49M15
MSC: 65G99
MSC: 65J15
MSC: 65K10
idZBL: Zbl 1199.65182
idMR: MR2494784
DOI: 10.21136/MB.2008.140620
.
Date available: 2010-07-20T17:33:27Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/140620
.
Reference: [1] Argyros, I. K.: A new convergence theorem for Steffensen's method on Banach spaces and applications.Southwest J. Pure Appl. Math. 1 (1997), 23-29. Zbl 0895.65024, MR 1643344
Reference: [2] Argyros, I. K.: A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space.J. Math. Anal. Appl. 298 (2004), 374-397. Zbl 1061.47052, MR 2086964, 10.1016/j.jmaa.2004.04.008
Reference: [3] Argyros, I. K.: New sufficient convergence conditions for the secant method.Czech. Math. J. 55 (2005), 175-187. Zbl 1081.65043, MR 2121665, 10.1007/s10587-005-0013-1
Reference: [4] Argyros, I. K.: Approximate Solution of Operator Equations with Applications.World Scientific Publ. Comp., New Jersey, USA (2005). Zbl 1086.47002, MR 2174829
Reference: [5] Argyros, I. K.: An improved convergence analysis of a superquadratic method for solving generalized equations.Rev. Colombiana Math. 40 (2006), 65-73. Zbl 1189.65130, MR 2286853
Reference: [6] Aubin, J. P., Frankowska, H.: Set-Valued Analysis.Birkhäuser, Boston (1990). Zbl 0713.49021, MR 1048347
Reference: [7] Cătinas, E.: On some iterative methods for solving nonlinear equations.Rev. Anal. Numér. Théor. Approx. 23 (1994), 17-53. Zbl 0818.65050, MR 1325892
Reference: [8] Dontchev, A. L.: Uniform convergence of the Newton method for Aubin continuous maps.Serdica Math. J. 22 (1996), 385-398. Zbl 0865.90115, MR 1455391
Reference: [9] Dontchev, A. L., Hager, W. W.: An inverse mapping theorem for set-valued maps.Proc. Amer. Math. Soc. 121 (1994), 481-489. Zbl 0804.49021, MR 1215027, 10.1090/S0002-9939-1994-1215027-7
Reference: [10] Geoffroy, M. H., Hilout, S., Piétrus, A.: Acceleration of convergence in Dontchev's iterative method for solving variational inclusions.Serdica Math. J. 29 (2003), 45-54. MR 1981104
Reference: [11] Geoffroy, M. H., Piétrus, A.: Local convergence of some iterative methods for solving generalized equations.J. Math. Anal. Appl. 290 (2004), 497-505. MR 2033038, 10.1016/j.jmaa.2003.10.008
Reference: [12] Hilout, S., Piétrus, A.: A semilocal convergence analysis of a secant-type method for solving generalized equations.Positivity 10 (2006), 693-700. MR 2280643, 10.1007/s11117-006-0044-3
Reference: [13] Hernández, M. A., Rubio, M. J.: Semilocal convergence of the secant method under mild convergence conditions of differentiability.Comput. Math. Appl. 44 (2002), 277-285. Zbl 1055.65069, MR 1912346, 10.1016/S0898-1221(02)00147-5
Reference: [14] Hernández, M. A., Rubio, M. J.: $\omega$-conditioned divided differences to solve nonlinear equations.Monografías del Semin. Matem. García de Galdeano 27 (2003), 323-330. Zbl 1056.47055, MR 2026031
Reference: [15] Ioffe, A. D., Tihomirov, V. M.: Theory of Extremal Problems.North Holland, Amsterdam (1979). Zbl 0407.90051, MR 0528295
Reference: [16] Mordukhovich, B. S.: Complete characterization of openness metric regularity and Lipschitzian properties of multifunctions.Trans. Amer. Math. Soc. 340 (1993), 1-36. Zbl 0791.49018, MR 1156300, 10.1090/S0002-9947-1993-1156300-4
Reference: [17] Mordukhovich, B. S.: Stability theory for parametric generalized equations and variational inequalities via nonsmooth analysis.Trans. Amer. Math. Soc. 343 (1994), 609-657. Zbl 0826.49008, MR 1242786, 10.1090/S0002-9947-1994-1242786-4
Reference: [18] Piétrus, A.: Generalized equations under mild differentiability conditions.Rev. Real. Acad. Ciencias de Madrid 94 (2000), 15-18. MR 1829498
Reference: [19] Piétrus, A.: Does Newton's method for set-valued maps converges uniformly in mild differentiability context? Rev.Colombiana Mat. 32 (2000), 49-56. MR 1905206
Reference: [20] Rockafellar, R. T.: Lipschitzian properties of multifunctions.Nonlinear Analysis 9 (1984), 867-885. MR 0799890, 10.1016/0362-546X(85)90024-0
Reference: [21] Rockafellar, R. T., Wets, R. J.-B.: Variational Analysis.A Series of Comprehensives Studies in Mathematics, Springer, 317 (1998). Zbl 0888.49001, MR 1491362
.

Files

Files Size Format View
MathBohem_133-2008-3_8.pdf 234.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo