Previous |  Up |  Next

Article

Title: Operators on Lorentz sequence spaces (English)
Author: Arora, S. C.
Author: Datt, Gopal
Author: Verma, Satish
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 134
Issue: 1
Year: 2009
Pages: 87-98
Summary lang: English
.
Category: math
.
Summary: Description of multiplication operators generated by a sequence and composition operators induced by a partition on Lorentz sequence spaces $l(p,q)$, $1<p \le \infty $, $1\le q \le \infty $ is presented. (English)
Keyword: composition operator
Keyword: distribution function
Keyword: Fredholm operator
Keyword: Lorentz space
Keyword: Lorentz sequence space
Keyword: multiplication operator
Keyword: non-increasing rearrangement
MSC: 46E30
MSC: 47B33
MSC: 47B38
idZBL: Zbl 1211.47027
idMR: MR2504693
DOI: 10.21136/MB.2009.140643
.
Date available: 2010-07-20T17:50:09Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/140643
.
Reference: [1] Abrahamse, M. B.: Multiplication Operators.Lecture Notes in Math., Vol. 693, Springer 17-36 (1978). Zbl 0411.47021, MR 0526530, 10.1007/BFb0064658
Reference: [2] Allen, G. D.: Duals of Lorentz spaces.Pacific J. Math. 77 287-291 (1978). Zbl 0362.46012, MR 0510924, 10.2140/pjm.1978.77.287
Reference: [3] Arora, S. C., Gopal Datt, Satish Verma: Composition operators on Lorentz spaces.Bull. Austral. Math. Soc. 76 205-214 (2007). MR 2353207, 10.1017/S0004972700039599
Reference: [4] Bennett, C., Sharpley, R.: Interpolation of Operators.Pure and Applied Math. Vol. 129, Academic Press Inc., New York (1988). Zbl 0647.46057, MR 0928802
Reference: [5] Cui, Y., Hudzik, H., Romesh Kumar, Maligranda, L.: Composition operators in Orlicz spaces.J. Austral. Math. Soc. 76 189-206 (2004). MR 2041244, 10.1017/S1446788700008892
Reference: [6] Hudzik, H., Rajeev Kumar, Romesh Kumar: Matrix multiplication operators on Banach function spaces.Proc. Indian Acad. Sci. (Math. Sci.) 116 71-81 (2006). MR 2210306, 10.1007/BF02829740
Reference: [7] Hudzik, H., Kaminska, A., Mastylo, M.: On the dual of Orlicz-Lorentz space.Proc. Amer. Math. Soc. 130 1645-1654 (2003). MR 1887011, 10.1090/S0002-9939-02-05997-X
Reference: [8] Hunt, R. A.: On $L(p, q)$ spaces.L'Enseignment Math. 12 249-276 (1966). Zbl 0181.40301, MR 0223874
Reference: [9] Kaminska, A., Raynaud, Y.: Isomorphic $lp$-subspaces in Orlicz-Lorentz sequence spaces.Proc. Amer. Math. Soc. 134 2317-2327 (2006). MR 2213705, 10.1090/S0002-9939-06-08266-9
Reference: [10] Lorentz, G. G.: Some new functional spaces.Ann. Math. 51 37-55 (1950). Zbl 0035.35602, MR 0033449, 10.2307/1969496
Reference: [11] Lorentz, G. G.: On the theory of spaces $\Lambda $.Pacific J. Math. 1 411-429 (1951). Zbl 0043.11302, MR 0044740, 10.2140/pjm.1951.1.411
Reference: [12] Montgomery-Smith, S. J.: Orlicz-Lorentz Spaces, Proceedings of the Orlicz Memorial Conference.Oxford, Mississippi (1991).
Reference: [13] Nakai, E.: Pointwise multipliers on the Lorentz spaces.Mem. Osaka Kyoiku Univ. III Natur. Sci. Appl. Sci. 45 1-7 (1996). MR 1448884
Reference: [14] Singh, R. K., Kumar, A.: Multiplication and composition operators with closed ranges.Bull. Aust. Math. Soc. 16 247-252 (1977). MR 0493495, 10.1017/S0004972700023261
Reference: [15] Singh, R. K., Manhas, J. S.: Composition Operators on Function Spaces.North Holland Math. Stud. 179, Elsevier Science Publications Amsterdem (1993). Zbl 0788.47021, MR 1246562
Reference: [16] Stein, Elias M., Guido Weiss: Introduction to Fourier Analysis on Euclidean Spaces.Princeton Math. Series, Vol. 32, Princeton Univ. Press, Princeton N.J. (1971). MR 0304972
Reference: [17] Takagi, H.: Fredholm weighted composition operators.Integral Equations Oper. Theory 16 267-276 (1933). MR 1205002, 10.1007/BF01358956
.

Files

Files Size Format View
MathBohem_134-2009-1_9.pdf 254.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo