Previous |  Up |  Next

Article

Title: Nearly antipodal chromatic number $ac'(P_n)$ of the path $P_n$ (English)
Author: Kola, Srinivasa Rao
Author: Panigrahi, Pratima
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 134
Issue: 1
Year: 2009
Pages: 77-86
Summary lang: English
.
Category: math
.
Summary: Chartrand et al.\ (2004) have given an upper bound for the nearly antipodal chromatic number $ac'(P_n)$ as $\binom {n-2}2+2$ for $n \geq 9$ and have found the exact value of $ac'(P_n)$ for $n=5,6,7,8$. Here we determine the exact values of $ac'(P_n)$ for $n \geq 8$. They are $2p^2-6p+8$ for $n=2p$ and $2p^2-4p+6$ for $n=2p+1$. The exact value of the radio antipodal number $ac(P_n)$ for the path $P_n$ of order $n$ has been determined by Khennoufa and Togni in 2005 as $2p^2-2p+3$ for $n=2p+1$ and $2p^2-4p+5$ for $n=2p$. Although the value of $ac(P_n)$ determined there is correct, we found a mistake in the proof of the lower bound when $n=2p$ (Theorem $6$). However, we give an easy observation which proves this lower bound. (English)
Keyword: radio $k$-coloring
Keyword: span
Keyword: radio $k$-chromatic number
MSC: 05C12
MSC: 05C15
MSC: 05C78
idZBL: Zbl 1212.05236
idMR: MR2504690
DOI: 10.21136/MB.2009.140642
.
Date available: 2010-07-20T17:49:00Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/140642
.
Reference: [1] Chartrand, G., Erwin, D., Harary, F., Zhang, P.: Radio labelings of graphs.Bull. Inst. Combin. Appl. 33 (2001), 77-85. Zbl 0989.05102, MR 1913399
Reference: [2] Chartrand, G., Erwin, D., Zhang, P.: Radio antipodal colorings of cycles.Congr. Numerantium 144 (2000), 129-141. Zbl 0976.05028, MR 1817928
Reference: [3] Chartrand, G., Erwin, D., Zhang, P.: Radio antipodal colorings of graphs.Math. Bohem. 127 (2002), 57-69. Zbl 0995.05056, MR 1895247
Reference: [4] Chartrand, G., Nebeský, L., Zhang, P.: Radio $k$-colorings of paths.Discuss. Math., Graph Theory 24 (2004), 5-21. Zbl 1056.05053, MR 2118291, 10.7151/dmgt.1209
Reference: [5] Khennoufa, R., Togni, O.: A note on radio antipodal colourings of paths.Math. Bohem. 130 (2005), 277-282. Zbl 1110.05033, MR 2164657
Reference: [6] Liu, D., Zhu, X.: Multi-level distance labelings for paths and cycles.SIAM J. Discrete Math. 19 (2005), 610-621. MR 2191283, 10.1137/S0895480102417768
Reference: [7] Mustapha Kchikech, Riadh Khennoufa, Olivier Togni: Linear and cyclic radio $k$-labelings of trees.Discuss. Math., Graph Theory 27 (2007), 105-123. MR 2321426, 10.7151/dmgt.1348
.

Files

Files Size Format View
MathBohem_134-2009-1_8.pdf 255.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo