Previous |  Up |  Next

Article

Title: Mean value theorems for divided differences and approximate Peano derivatives (English)
Author: Mukhopadhyay, S. N.
Author: Ray, S.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 134
Issue: 2
Year: 2009
Pages: 165-171
Summary lang: English
.
Category: math
.
Summary: Several mean value theorems for higher order divided differences and approximate Peano derivatives are proved. (English)
Keyword: mean value
Keyword: higher order divided difference
Keyword: approximate Peano derivative
Keyword: $n$-convex function
MSC: 26A24
MSC: 26A99
idZBL: Zbl 1212.26075
idMR: MR2535144
DOI: 10.21136/MB.2009.140651
.
Date available: 2010-07-20T17:56:00Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/140651
.
Reference: [1] Bruckner, A. M.: Differentiation of Real Functions.Lect. Notes Math., Springer, New York (1978). Zbl 0382.26002, MR 0507448
Reference: [2] Bullen, P. S.: A criterion for $n$-convexity.Pacific J. Math. 36 (1971), 81-98. Zbl 0194.08602, MR 0274681, 10.2140/pjm.1971.36.81
Reference: [3] Bullen, P. S., Mukhopadhyay, S. N.: Properties of Baire$^*$-1 Darboux functions and some mean value theorems for Peano derivatives.Math. Jap. 36 (1991), 309-316. Zbl 0726.26002, MR 1095745
Reference: [4] Evans, M. J.: $L_p$ derivatives and approximate Peano derivatives.Trans. Amer. Math. Soc. 165 (1972), 381-388 . MR 0293030
Reference: [5] Mukhopadhyay, S. N.: On the approximate Peano derivatives.Fund. Math. 88 (1975), 133-143. Zbl 0307.26007, MR 0376974
.

Files

Files Size Format View
MathBohem_134-2009-2_5.pdf 218.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo