Previous |  Up |  Next

Article

Title: Blaschke product generated covering surfaces (English)
Author: Barza, Ilie
Author: Ghisa, Dorin
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 134
Issue: 2
Year: 2009
Pages: 173-182
Summary lang: English
.
Category: math
.
Summary: It is known that, under very general conditions, Blaschke products generate branched covering surfaces of the Riemann sphere. We are presenting here a method of finding fundamental domains of such coverings and we are studying the corresponding groups of covering transformations. (English)
Keyword: Blaschke product
Keyword: covering surface
Keyword: covering transformation
Keyword: fundamental domain
Keyword: Cantor set
MSC: 14H30
MSC: 30D50
idZBL: Zbl 1212.30158
idMR: MR2535145
DOI: 10.21136/MB.2009.140652
.
Date available: 2010-07-20T17:56:41Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/140652
.
Reference: [1] Ahlfors, L. V.: Complex Analysis.International Series in Pure and Applied Mathematics, Mc Graw-Hill Company, Düsseldorf (1979). Zbl 0395.30001, MR 0510197
Reference: [2] Ahlfors, L. V., Sario, L.: Riemann Surfaces.Princeton University Press, Princeton N.J. (1960). Zbl 0196.33801, MR 0114911
Reference: [3] Barza, I., Ghisa, D.: The Geometry of Blaschke Product Mappings.Further Progress in Analysis, World Scientific H. G. W. Begehr, A. O. Celebi, R. P. Gilbert (2008). MR 2581622
Reference: [4] Barza, I., Ghisa, D.: Blaschke Self-Mappings of the Real Projective Plane.The Procedings of the 6-th Congress of Romanian Mathematiciens, Bucharest (2007). MR 2641555
Reference: [5] Cassier, G., Chalendar, I.: The group of invariants of a finite Blaschke product.Complex Variables, Theory Appl. 42 193-206 (2000). MR 1788126, 10.1080/17476930008815283
Reference: [6] Cao-Huu, T., Ghisa, D.: Invariants of infinite Blaschke products.Matematica 45 1-8 (2007). Zbl 1164.30024, MR 2431141
Reference: [7] Constantinescu, C., et al.: Integration Theory, Vol. 1.John Wiley & Sons, New York (1985).
Reference: [8] Garnett, J. B.: Bounded Analytic Functions.Academic Press, New York (1981). Zbl 0469.30024, MR 0628971
.

Files

Files Size Format View
MathBohem_134-2009-2_6.pdf 508.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo