Previous |  Up |  Next

Article

Title: On relatively almost Lindelöf subsets (English)
Author: Song, Yankui
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 134
Issue: 2
Year: 2009
Pages: 183-190
Summary lang: English
.
Category: math
.
Summary: A subspace $Y$ of a space $X$ is almost Lindelöf (strongly almost Lindelöf) in $X$ if for every open cover $\mathcal U$ of $X$ (of $Y$ by open subsets of $X$), there exists a countable subset $\mathcal V$ of $\mathcal U$ such that $Y\subseteq \bigcup \{\overline V\: V\in \mathcal V\}$. In this paper we investigate the relationships between relatively almost Lindelöf subset and relatively strongly almost Lindelöf subset by giving some examples, and also study various properties of relatively almost Lindelöf subsets and relatively strongly almost Lindelöf subsets. (English)
Keyword: Lindelöf space
Keyword: strongly Lindelöf subset
Keyword: almost Lindelöf subset
Keyword: strongly almost Lindelöf subset
MSC: 54D15
MSC: 54D20
idZBL: Zbl 1212.54079
idMR: MR2535146
DOI: 10.21136/MB.2009.140653
.
Date available: 2010-07-20T17:57:13Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/140653
.
Reference: [1] Arhangel'skii, A. V., Hamdi, M. M., Genedi: The beginnings of the theory of relative topological properties.General Topology. Spaces and Functions, MGU, Moskva (1989), 3-48 Russian.
Reference: [2] Arhangel'skii, A. V.: A generic theorem in the theory of cardinal invariants of topological spaces.Comment. Math. Univ. Carolinae 36 (1995), 303-325. MR 1357532
Reference: [3] Engelking, R.: General Topology.Revised and completed edition, Heldermann (1989). Zbl 0684.54001, MR 1039321
Reference: [4] Kočinac, Lj. D.: Some relative topological properties.Mat. Vesn. 44 (1992), 33-44. MR 1201265
Reference: [5] Cammaroto, F., Santoro, G.: Some counterexamples and properties on generalizations of Lindelöf spaces.Int. J. Math. Math. Sci. 19 (1996), 737-746. Zbl 0860.54033, MR 1397840, 10.1155/S0161171296001020
Reference: [6] Willard, S., Dissanayake, U. N. B.: The almost Lindelöf degree.Can. Math. Bull. 27 (1984), 452-455. Zbl 0551.54003, MR 0763044, 10.4153/CMB-1984-070-2
.

Files

Files Size Format View
MathBohem_134-2009-2_7.pdf 235.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo