Previous |  Up |  Next

Article

Title: The rank of a commutative semigroup (English)
Author: Cegarra, Antonio M.
Author: Petrich, Mario
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 134
Issue: 3
Year: 2009
Pages: 301-318
Summary lang: English
.
Category: math
.
Summary: The concept of rank of a commutative cancellative semigroup is extended to all commutative semigroups $S$ by defining $\mathop{\rm rank}S$ as the supremum of cardinalities of finite independent subsets of $S$. Representing such a semigroup $S$ as a semilattice $Y$ of (archimedean) components $S_\alpha $, we prove that $\mathop{\rm rank}S$ is the supremum of ranks of various $S_\alpha $. Representing a commutative separative semigroup $S$ as a semilattice of its (cancellative) archimedean components, the main result of the paper provides several characterizations of $\mathop{\rm rank}S$; in particular if $\mathop{\rm rank}S$ is finite. Subdirect products of a semilattice and a commutative cancellative semigroup are treated briefly. We give a classification of all commutative separative semigroups which admit a generating set of one or two elements, and compute their ranks. (English)
Keyword: semigroup
Keyword: commutative semigroup
Keyword: independent subset
Keyword: rank
Keyword: separative semigroup
Keyword: power cancellative semigroup
Keyword: archimedean component
MSC: 20M05
MSC: 20M10
MSC: 20M14
idZBL: Zbl 1197.20051
idMR: MR2561308
DOI: 10.21136/MB.2009.140663
.
Date available: 2010-07-20T18:05:02Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/140663
.
Reference: [1] Cegarra, A. M., Petrich, M.: Commutative cancellative semigroups of finite rank.Period. Math. Hung. 49 (2004), 35-44. Zbl 1070.20068, MR 2106464, 10.1007/s10998-004-0521-z
Reference: [2] Cegarra, A. M., Petrich, M.: The rank of a commutative cancellative semigroup.Acta Math. Hung. 107 (2005), 71-75. Zbl 1076.20049, MR 2148936, 10.1007/s10474-005-0179-x
Reference: [3] Cegarra, A. M., Petrich, M.: Commutative cancellative semigroups of low rank.Preprint.
Reference: [4] Clifford, A. H., Preston, G. B.: The Algebraic Theory of Semigroups, Vol I.Math. Surveys No. 7, Amer. Math. Soc., Providence (1961). Zbl 0111.03403, MR 0132791
Reference: [5] Grillet, P. A.: Commutative Semigroups.Kluwer, Dordrecht (2001). Zbl 1040.20048, MR 2017849
Reference: [6] Hall, R. E.: Commutative cancellative semigroups with two generators.Czech. Math. J. 21 (1971), 449-452. Zbl 0244.20074, MR 0286920
Reference: [7] Hall, R. E.: The translational hull of an $N$-semigroup.Pacific J. Math. 41 (1972), 379-389. Zbl 0252.20065, MR 0306369, 10.2140/pjm.1972.41.379
Reference: [8] Howie, J. M., M. J. Marques Ribeiro: Rank properties in finite semigroups II: the small rank and the large rank.Southeast Asian Bull. Math. 24 (2000), 231-237. Zbl 0967.20030, MR 1810060, 10.1007/s10012-000-0231-2
Reference: [9] Petrich, M.: On the structure of a class of commutative semigroups.Czech. Math. J. 14 (1964), 147-153. Zbl 0143.03403, MR 0166284
Reference: [10] Petrich, M.: Introduction to Semigroups.Merrill, Columbus (1973). Zbl 0321.20037, MR 0393206
.

Files

Files Size Format View
MathBohem_134-2009-3_5.pdf 284.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo