Previous |  Up |  Next

Article

Keywords:
nonlinear convection-diffusion equation; mixed Dirichlet-Neumann conditions; discontinuous Galerkin finite element method; method of lines; nonconforming meshes; NIPG; SIPG; IIPG versions; error estimate; space semidiscretization
Summary:
The paper is devoted to the analysis of the discontinuous Galerkin finite element method (DGFEM) applied to the space semidiscretization of a nonlinear nonstationary convection-diffusion problem with mixed Dirichlet-Neumann boundary conditions. General nonconforming meshes are used and the NIPG, IIPG and SIPG versions of the discretization of diffusion terms are considered. The main attention is paid to the impact of the Neumann boundary condition prescribed on a part of the boundary on the truncation error in the approximation of the nonlinear convective terms. The estimate of this error allows to analyse the error estimate of the method. The results obtained represent the completion and extension of the analysis from V. Dolejší, M. Feistauer, Numer. Funct. Anal. Optim. {\it 26} (2005), 349--383, where the truncation error in the approximation of the nonlinear convection terms was proved only in the case when the Dirichlet boundary condition on the whole boundary of the computational domain was considered.
References:
[1] Arnold, D. N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19 (1982), 742-760. DOI 10.1137/0719052 | MR 0664882 | Zbl 0482.65060
[2] Arnold, D. N., Brezzi, F., Cockburn, B., Marini, L. D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2002), 1749-1779. DOI 10.1137/S0036142901384162 | MR 1885715 | Zbl 1008.65080
[3] Ciarlet, P. G.: The Finite Elements Method for Elliptic Problems. North-Holland Amsterdam-New York-Oxford (1978). MR 0520174
[4] Cockburn, B.: Discontinuous Galerkin methods for convection-dominated problems. In: High-Order Methods for Computational Physics. Lect. Notes Comput. Sci. Eng., Vol. 9 T. J. Barth, H. Deconinck Springer Berlin (1999), 69-224. DOI 10.1007/978-3-662-03882-6_2 | MR 1712278 | Zbl 0937.76049
[5] Cockburn, B., Karniadakis, G. E., Shu, C.-W., eds.: Discontinuous Galerkin Methods. Springer Berlin (2000). MR 1842160 | Zbl 0989.76045
[6] Dawson, C. N., Sun, S., Wheeler, M. F.: Compatible algorithms for coupled flow and transport. Comput. Methods Appl. Mech. Eng. 193 (2004), 2565-2580. DOI 10.1016/j.cma.2003.12.059 | MR 2055253 | Zbl 1067.76565
[7] Dolejší, V., Feistauer, M.: Error estimates of the discontinuous Galerkin method for nonlinear nonstationary convection-diffusion problems. Numer. Funct. Anal. Optimization 26 (2005), 349-383. DOI 10.1081/NFA-200067298 | MR 2153838
[8] Dolejší, V., Feistauer, M., Hozman, J.: Analysis of semi-implicit {DGFEM} for nonlinear convection-diffusion problems on nonconforming meshes. Comput. Methods Appl. Mech. Eng. 196 (2007), 2813-2827. DOI 10.1016/j.cma.2006.09.025 | MR 2325393
[9] Dolejší, V., Feistauer, M., Kučera, V., Sobotíková, V.: An optimal {$L^{\infty}(L^2)$}-error estimate for the discontinuous Galerkin approximation of a nonlinear non-stationary convection-diffusion problem. IMA J. Numer. Anal. 28 (2008), 496-521. DOI 10.1093/imanum/drm023 | MR 2433210
[10] Dolejší, V., Feistauer, M., Sobotíková, V.: A discontinuous Galerkin method for nonlinear convection-diffusion problems. Comput. Methods Appl. Mech. Eng. 194 (2005), 2709-2733. DOI 10.1016/j.cma.2004.07.017 | MR 2136396
[11] Feistauer, M.: Optimal error estimates in the {DGFEM} for nonlinear convection-diffusion problems. In: Numerical Mathematics and Advanced Applications, ENUMATH 2007 K. Kunisch, G. Of, O. Steinbach Springer Heidelberg (2008), 323-330.
[12] Feistauer, M., Kučera, V.: Analysis of the DGFEM for nonlinear convection-diffusion problems. ETNA, Electron. Trans. Numer. Anal. 32 (2008), 33-48. MR 2537215
[13] Feistauer, M., Dolejší, V., Kučera, V., Sobotíková, V.: An optimal $L^{\infty}(L^2)$ error estimates for the discontinuous Galerkin approximation of a nonlinear nonstationary convection-diffusion problem on nonconforming meshes. M2AN, Math. Model. Numer. Anal Submitted.
[14] Feistauer, M., Švadlenka, K.: Discontinuous Galerkin method of lines for solving nonstationary singularly perturbed linear problems. J. Numer. Math. 12 (2004), 97-117. DOI 10.1515/156939504323074504 | MR 2062581
[15] Houston, P., Robson, J., Süli, E.: Discontinuous Galerkin finite element approximation of quasilinear elliptic boundary value problems. I: The scalar case. IMA J. Numer. Anal. 25 (2005), 726-749. DOI 10.1093/imanum/dri014 | MR 2170521
[16] Houston, P., Schwab, C., Süli, E.: Discontinuous $hp$-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 39 (2002), 2133-2163. DOI 10.1137/S0036142900374111 | MR 1897953
[17] Kufner, A., John, O., Fučík, S.: Function Spaces. Academia Prague (1977). MR 0482102
[18] Nečas, J.: Les Méthodes Directes en Thèorie des Equations Elliptiques. Academia Prague (1967). MR 0227584
[19] Rivière, B., Wheeler, M. F.: A discontinuous Galerkin method applied to nonlinear parabolic equations. In: Discontinuous Galerkin methods. Theory, Computation and Applications. Lect. Notes Comput. Sci. Eng., Vol. 11 B. Cockburn, G. E. Karniadakis, C.-W. Schu Springer Berlin (2000), 231-244. DOI 10.1007/978-3-642-59721-3_17 | MR 1842177
[20] Rivière, B., Wheeler, M. F., Girault, V.: Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems I. Comput. Geosci. 3 (1999), 337-360. DOI 10.1023/A:1011591328604 | MR 1750076
[21] Roos, H.-G., Zarin, H.: The discontinuous Galerkin finite element method for singularly perturbed problems. In: CISC 2002, Lect. Notes Comput. Sci. Eng., Vol. 35 E. Bensch Springer Berlin (2003), 246-267. DOI 10.1007/978-3-642-19014-8_12 | MR 2070794 | Zbl 1043.65130
[22] Roos, H.-G., Zarin, H.: A supercloseness result for the discontinuous Galerkin stabilization of convection-diffusion problems on Shishkin meshes. Numer. Methods Partial Differential Equations 23 (2007), 1560-1576. DOI 10.1002/num.20241 | MR 2355174 | Zbl 1145.65100
[23] Roubíček, T.: Nonlinear Partial Differential Equations with Applications. Birkhäuser Basel-Boston-Berlin (2005). MR 2176645
[24] Sun, S., Wheeler, M. F.: Symmetric and nonsymmetric discontinuous Galerkin methods for reactive transport in porous media. SIAM J. Numer. Anal. 43 (2005), 195-219. DOI 10.1137/S003614290241708X | MR 2177141 | Zbl 1086.76043
[25] Wheeler, M. F.: An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15 (1978), 152-161. DOI 10.1137/0715010 | MR 0471383 | Zbl 0384.65058
Partner of
EuDML logo