Previous |  Up |  Next

Article

Title: Discontinuous Galerkin method for nonlinear convection-diffusion problems with mixed Dirichlet-Neumann boundary conditions (English)
Author: Havle, Oto
Author: Dolejší, Vít
Author: Feistauer, Miloslav
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 55
Issue: 5
Year: 2010
Pages: 353-372
Summary lang: English
.
Category: math
.
Summary: The paper is devoted to the analysis of the discontinuous Galerkin finite element method (DGFEM) applied to the space semidiscretization of a nonlinear nonstationary convection-diffusion problem with mixed Dirichlet-Neumann boundary conditions. General nonconforming meshes are used and the NIPG, IIPG and SIPG versions of the discretization of diffusion terms are considered. The main attention is paid to the impact of the Neumann boundary condition prescribed on a part of the boundary on the truncation error in the approximation of the nonlinear convective terms. The estimate of this error allows to analyse the error estimate of the method. The results obtained represent the completion and extension of the analysis from V. Dolejší, M. Feistauer, Numer. Funct. Anal. Optim. {\it 26} (2005), 349--383, where the truncation error in the approximation of the nonlinear convection terms was proved only in the case when the Dirichlet boundary condition on the whole boundary of the computational domain was considered. (English)
Keyword: nonlinear convection-diffusion equation
Keyword: mixed Dirichlet-Neumann conditions
Keyword: discontinuous Galerkin finite element method
Keyword: method of lines
Keyword: nonconforming meshes
Keyword: NIPG
Keyword: SIPG
Keyword: IIPG versions
Keyword: error estimate
Keyword: space semidiscretization
MSC: 35K20
MSC: 35K55
MSC: 65M12
MSC: 65M15
MSC: 65M20
MSC: 65M50
MSC: 65M60
MSC: 76M10
idZBL: Zbl 1224.65219
idMR: MR2737717
DOI: 10.1007/s10492-010-0012-x
.
Date available: 2010-11-24T08:12:29Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/140709
.
Reference: [1] Arnold, D. N.: An interior penalty finite element method with discontinuous elements.SIAM J. Numer. Anal. 19 (1982), 742-760. Zbl 0482.65060, MR 0664882, 10.1137/0719052
Reference: [2] Arnold, D. N., Brezzi, F., Cockburn, B., Marini, L. D.: Unified analysis of discontinuous Galerkin methods for elliptic problems.SIAM J. Numer. Anal. 39 (2002), 1749-1779. Zbl 1008.65080, MR 1885715, 10.1137/S0036142901384162
Reference: [3] Ciarlet, P. G.: The Finite Elements Method for Elliptic Problems.North-Holland Amsterdam-New York-Oxford (1978). MR 0520174
Reference: [4] Cockburn, B.: Discontinuous Galerkin methods for convection-dominated problems.In: High-Order Methods for Computational Physics. Lect. Notes Comput. Sci. Eng., Vol. 9 T. J. Barth, H. Deconinck Springer Berlin (1999), 69-224. Zbl 0937.76049, MR 1712278, 10.1007/978-3-662-03882-6_2
Reference: [5] Cockburn, B., Karniadakis, G. E., Shu, C.-W., eds.: Discontinuous Galerkin Methods.Springer Berlin (2000). Zbl 0989.76045, MR 1842160
Reference: [6] Dawson, C. N., Sun, S., Wheeler, M. F.: Compatible algorithms for coupled flow and transport.Comput. Methods Appl. Mech. Eng. 193 (2004), 2565-2580. Zbl 1067.76565, MR 2055253, 10.1016/j.cma.2003.12.059
Reference: [7] Dolejší, V., Feistauer, M.: Error estimates of the discontinuous Galerkin method for nonlinear nonstationary convection-diffusion problems.Numer. Funct. Anal. Optimization 26 (2005), 349-383. MR 2153838, 10.1081/NFA-200067298
Reference: [8] Dolejší, V., Feistauer, M., Hozman, J.: Analysis of semi-implicit {DGFEM} for nonlinear convection-diffusion problems on nonconforming meshes.Comput. Methods Appl. Mech. Eng. 196 (2007), 2813-2827. MR 2325393, 10.1016/j.cma.2006.09.025
Reference: [9] Dolejší, V., Feistauer, M., Kučera, V., Sobotíková, V.: An optimal {$L^{\infty}(L^2)$}-error estimate for the discontinuous Galerkin approximation of a nonlinear non-stationary convection-diffusion problem.IMA J. Numer. Anal. 28 (2008), 496-521. MR 2433210, 10.1093/imanum/drm023
Reference: [10] Dolejší, V., Feistauer, M., Sobotíková, V.: A discontinuous Galerkin method for nonlinear convection-diffusion problems.Comput. Methods Appl. Mech. Eng. 194 (2005), 2709-2733. MR 2136396, 10.1016/j.cma.2004.07.017
Reference: [11] Feistauer, M.: Optimal error estimates in the {DGFEM} for nonlinear convection-diffusion problems.In: Numerical Mathematics and Advanced Applications, ENUMATH 2007 K. Kunisch, G. Of, O. Steinbach Springer Heidelberg (2008), 323-330. MR 2537215
Reference: [12] Feistauer, M., Kučera, V.: Analysis of the DGFEM for nonlinear convection-diffusion problems.ETNA, Electron. Trans. Numer. Anal. 32 (2008), 33-48. MR 2537215
Reference: [13] Feistauer, M., Dolejší, V., Kučera, V., Sobotíková, V.: An optimal $L^{\infty}(L^2)$ error estimates for the discontinuous Galerkin approximation of a nonlinear nonstationary convection-diffusion problem on nonconforming meshes.M2AN, Math. Model. Numer. Anal Submitted.
Reference: [14] Feistauer, M., Švadlenka, K.: Discontinuous Galerkin method of lines for solving nonstationary singularly perturbed linear problems.J. Numer. Math. 12 (2004), 97-117. MR 2062581, 10.1515/156939504323074504
Reference: [15] Houston, P., Robson, J., Süli, E.: Discontinuous Galerkin finite element approximation of quasilinear elliptic boundary value problems. I: The scalar case.IMA J. Numer. Anal. 25 (2005), 726-749. MR 2170521, 10.1093/imanum/dri014
Reference: [16] Houston, P., Schwab, C., Süli, E.: Discontinuous $hp$-finite element methods for advection-diffusion-reaction problems.SIAM J. Numer. Anal. 39 (2002), 2133-2163. MR 1897953, 10.1137/S0036142900374111
Reference: [17] Kufner, A., John, O., Fučík, S.: Function Spaces.Academia Prague (1977). MR 0482102
Reference: [18] Nečas, J.: Les Méthodes Directes en Thèorie des Equations Elliptiques.Academia Prague (1967). MR 0227584
Reference: [19] Rivière, B., Wheeler, M. F.: A discontinuous Galerkin method applied to nonlinear parabolic equations.In: Discontinuous Galerkin methods. Theory, Computation and Applications. Lect. Notes Comput. Sci. Eng., Vol. 11 B. Cockburn, G. E. Karniadakis, C.-W. Schu Springer Berlin (2000), 231-244. MR 1842177, 10.1007/978-3-642-59721-3_17
Reference: [20] Rivière, B., Wheeler, M. F., Girault, V.: Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems I.Comput. Geosci. 3 (1999), 337-360. MR 1750076, 10.1023/A:1011591328604
Reference: [21] Roos, H.-G., Zarin, H.: The discontinuous Galerkin finite element method for singularly perturbed problems.In: CISC 2002, Lect. Notes Comput. Sci. Eng., Vol. 35 E. Bensch Springer Berlin (2003), 246-267. Zbl 1043.65130, MR 2070794, 10.1007/978-3-642-19014-8_12
Reference: [22] Roos, H.-G., Zarin, H.: A supercloseness result for the discontinuous Galerkin stabilization of convection-diffusion problems on Shishkin meshes.Numer. Methods Partial Differential Equations 23 (2007), 1560-1576. Zbl 1145.65100, MR 2355174, 10.1002/num.20241
Reference: [23] Roubíček, T.: Nonlinear Partial Differential Equations with Applications.Birkhäuser Basel-Boston-Berlin (2005). MR 2176645
Reference: [24] Sun, S., Wheeler, M. F.: Symmetric and nonsymmetric discontinuous Galerkin methods for reactive transport in porous media.SIAM J. Numer. Anal. 43 (2005), 195-219. Zbl 1086.76043, MR 2177141, 10.1137/S003614290241708X
Reference: [25] Wheeler, M. F.: An elliptic collocation-finite element method with interior penalties.SIAM J. Numer. Anal. 15 (1978), 152-161. Zbl 0384.65058, MR 0471383, 10.1137/0715010
.

Files

Files Size Format View
AplMat_55-2010-5_1.pdf 329.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo