Previous |  Up |  Next

Article

Title: On Jordan ideals and derivations in rings with involution (English)
Author: Oukhtite, Lahcen
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 51
Issue: 3
Year: 2010
Pages: 389-395
Summary lang: English
.
Category: math
.
Summary: Let $R$ be a $2$-torsion free $\ast$-prime ring, $d$ a derivation which commutes with $\ast$ and $J$ a $\ast$-Jordan ideal and a subring of $R$. In this paper, it is shown that if either $d$ acts as a homomorphism or as an anti-homomorphism on $J$, then $d=0$ or $J\subseteq Z(R)$. Furthermore, an example is given to demonstrate that the $\ast$-primeness hypothesis is not superfluous. (English)
Keyword: $\ast$-prime rings
Keyword: Jordan ideals
Keyword: derivations
MSC: 16N16
MSC: 16U70
MSC: 16U80
MSC: 16W10
MSC: 16W25
idZBL: Zbl 1211.16037
idMR: MR2741872
.
Date available: 2010-09-02T14:11:52Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/140714
.
Reference: [1] Ashraf M., Ali A., Rehman N.: On Lie ideals with derivations as homomorphisms and anti-homomorphisms.Acta Math. Hungar. 101 (2003), 79–82. MR 2011464, 10.1023/B:AMHU.0000003893.61349.98
Reference: [2] Bell H.E., Kappe L.C.: Rings in which derivations satisfy certain algebraic conditions.Acta Math. Hungar. 53 (1989), 339–346. Zbl 0705.16021, MR 1014917, 10.1007/BF01953371
Reference: [3] Oukhtite L., Salhi S., Taoufiq L.: $\sigma$-Lie ideals with derivations as homomorphisms and anti-homomorphisms.Int. J. Algebra 1 (2007), no. 5, 235–239. Zbl 1124.16028, MR 2342996
Reference: [4] Oukhtite L., Salhi S.: On generalized derivations of $\sigma $-prime rings.Afr. Diaspora J. Math. 5 (2007), no. 1, 21–25. MR 2337187
Reference: [5] Zaidi S.M.A., Ashraf M., Ali S.: On Jordan ideals and left $(\theta ,\theta)$-derivations in prime rings.Int. J. Math. Math. Sci. 2004 (2004), no. 37–40, 1957–1964. Zbl 1069.16041, MR 2100888, 10.1155/S0161171204309075
Reference: [6] Posner E.C.: Derivations in prime rings.Proc. Amer. Math. Soc. 8 (1957), 1093–1100. Zbl 0082.03003, MR 0095863, 10.1090/S0002-9939-1957-0095863-0
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_51-2010-3_1.pdf 187.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo