Previous |  Up |  Next

Article

Title: Approximation and shape preserving properties of the nonlinear Bleimann-Butzer-Hahn operators of max-product kind (English)
Author: Bede, Barnabás
Author: Coroianu, Lucian
Author: Gal, Sorin G.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 51
Issue: 3
Year: 2010
Pages: 397-415
Summary lang: English
.
Category: math
.
Summary: Starting from the study of the Shepard nonlinear operator of max-prod type in (Bede, Nobuhara et al., 2006, 2008), in the book (Gal, 2008), Open Problem 5.5.4, pp. 324--326, the Bleimann-Butzer-Hahn max-prod type operator is introduced and the question of the approximation order by this operator is raised. In this paper firstly we obtain an upper estimate of the approximation error of the form $\omega_{1}(f;(1+x)^{\frac{3}{2}}\sqrt{x/n})$. A consequence of this result is that for each compact subinterval $[0,a]$, with arbitrary $a>0$, the order of uniform approximation by the Bleimann-Butzer-Hahn operator is less than ${\mathcal{O}}(1/\sqrt{n})$. Then, one proves by a counterexample that in a sense, for arbitrary $f$ this order of uniform approximation cannot be improved. Also, for some subclasses of functions, including for example the bounded, nondecreasing concave functions, the essentially better order $\omega_{1}(f;(x+1)^{2}/n)$ is obtained. Shape preserving properties are also investigated. (English)
Keyword: nonlinear Bleimann-Butzer-Hahn operator of max-product kind
Keyword: degree of approximation
Keyword: shape preserving properties
MSC: 41A25
MSC: 41A29
MSC: 41A30
idZBL: Zbl 1224.41060
idMR: MR2741873
.
Date available: 2010-09-02T14:12:42Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/140716
.
Reference: [1] Bede B., Gal S.G.: Approximation by nonlinear Bernstein and Favard-Szász-Mirakjan operators of max-product kind.J. Concrete and Applicable Mathematics 8 (2010), no. 2, 193–207. MR 2606257
Reference: [2] Bede B., Coroianu L., Gal S.G.: Approximation and shape preserving properties of the Bernstein operator of max-product kind.Int. J. Math. Math. Sci. 2009, Art. ID 590589, 26 pp., doi:10.1155/2009/590589. Zbl 1188.41016, MR 2570725
Reference: [3] Bede B., Coroianu L., Gal S.G.: Approximation by truncated nonlinear Favard-Szász-Mirakjan operators of max-product kind.Demonstratio Math.(to appear). MR 2796766
Reference: [4] Bede B., Nobuhara H., Fodor J., Hirota K.: Max-product Shepard approximation operators.J. Advanced Computational Intelligence and Intelligent Informatics 10 (2006), 494–497.
Reference: [5] Bede B., Nobuhara H., Daňková M., Di Nola A.: Approximation by pseudo-linear operators.Fuzzy Sets and Systems 159 (2008), 804–820. MR 2403975
Reference: [6] Bleimann G., Butzer P.L., Hahn L.: A Bernstein-type operator approximating continuous functions on the semi-axis.Indag. Math. 42 (1980), 255–262. Zbl 0437.41021, MR 0587054
Reference: [7] Duman O.: Statistical convergence of max-product approximating operators.Turkish J. Math. 33 (2009), 1–14. MR 2721963
Reference: [8] Gal S.G.: Shape-Preserving Approximation by Real and Complex Polynomials.Birkhäuser, Boston-Basel-Berlin, 2008. Zbl 1154.41002, MR 2444986
Reference: [9] Khan R.A.: A note on a Bernstein-type operator of Bleimann, Butzer and Hahn.J. Approx. Theory 53 (1988), no. 3, 295–303. Zbl 0676.41024, MR 0947433, 10.1016/0021-9045(88)90024-X
Reference: [10] Popoviciu T.: Deux remarques sur les fonctions convexes.Bull. Soc. Sci. Acad. Roumaine 220 (1938), 45–49. Zbl 0021.11605
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_51-2010-3_2.pdf 298.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo