Previous |  Up |  Next

Article

Title: Uniform non-squareness and property $(\beta )$ of Besicovitch-Orlicz spaces of almost periodic functions with Orlicz norm (English)
Author: Boulahia, Fatiha
Author: Morsli, Mohamed
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 51
Issue: 3
Year: 2010
Pages: 417-426
Summary lang: English
.
Category: math
.
Summary: We characterize the uniform non-squareness and the property $(\beta )$ of Besicovitch-Orlicz spaces of almost periodic functions equipped with Orlicz norm. (English)
Keyword: Besicovitch-Orlicz space
Keyword: almost periodic function
Keyword: uniform non-squareness
Keyword: property $(\beta )$
MSC: 46B20
MSC: 46E30
idZBL: Zbl 1224.46019
idMR: MR2741874
.
Date available: 2010-09-02T14:13:44Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/140717
.
Reference: [1] Chen S.: Geometry of Orlicz spaces.Dissertationes Math. 356 (1996). Zbl 1089.46500, MR 1410390
Reference: [2] Chen S., Hudzik H.: On some convexities of Orlicz and Orlich-Bochner spaces.Comment. Math. Univ. Carolin. 29 (1988), 13–29. MR 0937545
Reference: [3] Cui Y., Pluciennik R., Wang T.: Property $(\beta )$ in Orlicz spaces.Arch. Math. 69 (1997), 57–69. Zbl 0894.46023, MR 1452160, 10.1007/s000130050093
Reference: [4] James R.C.: Uniformly non-square Banach spaces.Ann. of Math. 80 (1964), 542–550. Zbl 0132.08902, MR 0173932, 10.2307/1970663
Reference: [5] Hudzik H.: Uniformly non-$l_{n}^{1}$ Orlicz spaces with Luxemburg norm.Studia Math. 81 (1985), 271–284. MR 0808569
Reference: [6] Hudzik H.: Geometry of some classes of Banach function spaces.Proceeding of the International Symposium on Banach and Function Spaces (Kitakyshu, Japan, October 2–4, 2003), pp. 17–57. Zbl 1085.46010, MR 2147600
Reference: [7] Garcia-Falset J., Llorens-Fuster E., Mazcunan-Navarro E.M.: Uniformly nonsquare Banach spaces have the fixed point property for nonexpansive mappings.J. Funct. Anal. 233 (2006), 494–514. Zbl 1120.46006, MR 2214585, 10.1016/j.jfa.2005.09.002
Reference: [8] Kutzarova D.N.: $k-(\beta )$ and $k$-nearly uniformly convex Banach spaces.J. Math. Anal. Appl. 162 (1991), 322–338. Zbl 0757.46026, MR 1137623, 10.1016/0022-247X(91)90153-Q
Reference: [9] Kolwicz P.: The property $(\beta )$ of Orlicz-Bochner sequence spaces.Comment. Math. Univ. Carolin. 42 (2001), 119–132. Zbl 1056.46020, MR 1825377
Reference: [10] Morsli M.: On some convexity properties of the Besicovitch-Orlicz space of almost periodic functions.Comment. Math. Prace Mat. 34 (1994), 137–152. Zbl 0839.46012, MR 1325081
Reference: [11] Morsli M., Bedouhene F., Boulahia F.: Duality properties and Riesz representation theorem in the Besicovitch-Orlicz space of almost periodic functions.Comment. Math. Univ. Carolin. 43 (2002), no. 1, 103–117. Zbl 1090.46010, MR 1903310
Reference: [12] Morsli M., Boulahia F.: Uniformly non-$l_{n}^{1}$ Besicovitch-Orlicz space of almost periodic functions.Comment. Math. Prace Mat. 45 (2005), no. 1, 25–34. MR 2199891
Reference: [13] Morsli M., Bedouhene F.: On the uniform convexity of the Besicovitch-Orlicz space of almost periodic functions with Orlicz norm.Colloq. Math. 102 (2005), no. 1, 97–111. Zbl 1112.46013, MR 2150272, 10.4064/cm102-1-9
Reference: [14] Rolewicz S.: On $\Delta $-uniform convexity and drop property.Studia Math. 87 (1987), 181–191. Zbl 0652.46010, MR 0928575
Reference: [15] Dhompongsa S.: Equivalence of the properties $(\beta )$ and (NUC).in Orlicz spaces, Comment. Math. Univ. Carolin. 41 (2000), no. 3, 449–457. Zbl 1040.46026, MR 1795076
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_51-2010-3_3.pdf 238.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo