Previous |  Up |  Next

Article

Title: A note on propagation of singularities of semiconcave functions of two variables (English)
Author: Zajíček, Luděk
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 51
Issue: 3
Year: 2010
Pages: 453-458
Summary lang: English
.
Category: math
.
Summary: P. Albano and P. Cannarsa proved in 1999 that, under some applicable conditions, singularities of semiconcave functions in $\mathbb R^n$ propagate along Lipschitz arcs. Further regularity properties of these arcs were proved by P. Cannarsa and Y. Yu in 2009. We prove that, for $n=2$, these arcs are very regular: they can be found in the form (in a suitable Cartesian coordinate system) $\psi(x) = (x, y_1(x)-y_2(x))$, $x\in [0,\alpha]$, where $y_1$, $y_2$ are convex and Lipschitz on $[0,\alpha]$. In other words: singularities propagate along arcs with finite turn. (English)
Keyword: semiconcave functions
Keyword: singularities
MSC: 26B25
MSC: 35A21
idZBL: Zbl 1224.26047
idMR: MR2741878
.
Date available: 2010-09-02T14:16:24Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/140721
.
Reference: [1] Albano P., Cannarsa P.: Structural properties of singularities of semiconcave functions.Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999), 719–740. Zbl 0957.26002, MR 1760538
Reference: [2] Alexandrov A.D., Reshetnyak Yu.G.: General theory of irregular curves.Mathematics and its Applications (Soviet Series), Vol. 29., Kluwer Academic Publishers, Dordrecht, 1989. Zbl 0691.53002, MR 1117220, 10.1007/978-94-009-2591-5
Reference: [3] Cannarsa P., Sinestrari C.: Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control.Progress in Nonlinear Differential Equations and their Applications, 58, Birkhäuser, Boston, 2004. Zbl 1095.49003, MR 2041617
Reference: [4] Clarke F.H.: Optimization and nonsmooth analysis.2nd edition, Classics in Applied Mathematics, 5, SIAM, Philadelphia, 1990. Zbl 0696.49002, MR 1058436
Reference: [5] Cannarsa P., Yu Y.: Singular dynamics for semiconcave functions.J. Eur. Math. Soc. 11 (2009), 999–1024. MR 2538498, 10.4171/JEMS/173
Reference: [6] Duda J.: Curves with finite turn.Czechoslovak Math. J. 58 (133) (2008), 23–49. Zbl 1167.46321, MR 2402524, 10.1007/s10587-008-0003-1
Reference: [7] Mifflin R.: Semismooth and semiconvex functions in constrained optimization.SIAM J. Control Optimization 15 (1977), 959–972. Zbl 0376.90081, MR 0461556, 10.1137/0315061
Reference: [8] Pavlica D.: On the points of non-differentiability of convex functions.Comment. Math. Univ. Carolin. 45 (2004), 727–734. Zbl 1100.26006, MR 2103086
Reference: [9] Spingarn J.E.: Submonotone subdifferentials of Lipschitz functions.Trans. Amer. Math. Soc. 264 (1981), 77–89. Zbl 0465.26008, MR 0597868, 10.1090/S0002-9947-1981-0597868-8
Reference: [10] Veselý L., Zajíček L.: Delta-convex mappings between Banach spaces and applications.Dissertationes Math. (Rozprawy Mat.) 289 (1989). MR 1016045
Reference: [11] Veselý L., Zajíček L.: On vector functions of bounded convexity.Math. Bohemica 133 (2008), 321–335. MR 2494785
Reference: [12] Zajíček L.: On the differentiation of convex functions in finite and infinite dimensional spaces.Czechoslovak Math. J. 29 (1979) 340–348. MR 0536060
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_51-2010-3_7.pdf 215.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo