Previous |  Up |  Next

Article

Title: Metric spaces with point character equal to their size (English)
Author: Avart, C.
Author: Komjath, P.
Author: Rödl, V.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 51
Issue: 3
Year: 2010
Pages: 459-467
Summary lang: English
.
Category: math
.
Summary: In this paper we consider the point character of metric spaces. This parameter which is a uniform version of dimension, was introduced in the context of uniform spaces in the late seventies by Jan Pelant, Cardinal reflections and point-character of uniformities, Seminar Uniform Spaces (Prague, 1973--1974), Math. Inst. Czech. Acad. Sci., Prague, 1975, pp. 149--158. Here we prove for each cardinal $\kappa$, the existence of a metric space of cardinality and point character $\kappa$. Since the point character can never exceed the cardinality of a metric space this gives the construction of metric spaces with “largest possible” point character. The existence of such spaces was already proved using GCH in Rödl V., Small spaces with large point character, European J. Combin. 8 (1987), no. 1, 55--58. The goal of this note is to remove this assumption. (English)
Keyword: point character
Keyword: uniform cover
Keyword: continuum hypothesis
Keyword: Specker graph
MSC: 03E05
MSC: 05C12
MSC: 05C15
MSC: 54A25
MSC: 54A99
idZBL: Zbl 1224.05130
idMR: MR2741879
.
Date available: 2010-09-02T14:17:21Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/140722
.
Reference: [1] Avart C., Komjáth P., Luczak T., Rödl V.: Colorful flowers.Topology Appl. 156 (2009), no. 7, 1386–1395. MR 2502015, 10.1016/j.topol.2008.12.013
Reference: [2] Erdös P., Hajnal A.: On chromatic number of infinite graphs.Theory of Graphs, P. Erdös and G. Katona, Eds., Akademiai Kiadó, Budapest, 1968, pp. 83–98. MR 0263693
Reference: [3] Erdös P., Galvin F., Hajnal A.: On set-systems having large chromatic number and not containing prescribed subsystems.Infinite and Finite Sets (A. Hajnal, R. Rado, V.T. Sós, Eds.), North Holland, 1976, pp. 425–513. MR 0398876
Reference: [4] Stone A.H.: Paracompactness and Product Spaces.Bull. Amer. Math. Soc. 54 (1948), 977–982. Zbl 0032.31403, MR 0026802, 10.1090/S0002-9904-1948-09118-2
Reference: [5] Stone A.H.: Universal Space for some Metrizable Uniformities.Quart. J. Math. 11 (1960), 105–115. MR 0116308, 10.1093/qmath/11.1.105
Reference: [6] Isbell J.R.: Uniform Spaces.Mathematical Surveys, 12, American Mathematical Society, Providence, RI, 1964. Zbl 0124.15601, MR 0170323
Reference: [7] J. Pelant: Cardinal reflections and point-character of uniformities.Seminar Uniform Spaces (Prague, 1973–1974), Math. Inst. Czech. Acad. Sci., Prague, 1975, pp. 149–158. Zbl 0326.54020, MR 0445460
Reference: [8] J. Pelant: Uniform metric spaces.Seminar Uniform Spaces 1975-1977 directed by Z. Frolík, Math. Inst. Czech. Acad. Sci., Prague, 1976, pp. 49–53.
Reference: [9] Pelant J., Rödl V.: On coverings of infinite-dimensional metric spaces.Discrete Math. 108 (1992), no. 1–3, 75–81. MR 1189831, 10.1016/0012-365X(92)90662-Y
Reference: [10] Rödl V.: Canonical partition relations and point character of $ \ell_1$ spaces.Seminar Uniform Spaces 1976-1977, pp. 79–81.
Reference: [11] Rödl V.: Small spaces with large point character.European J. Combin. 8 (1987), no. 1, 55–58. MR 0884064, 10.1016/S0195-6698(87)80020-3
Reference: [12] Schepin E.V.: On a problem of Isbell.Dokl. Akad. Nauk SSSR 222 (1976), 541–543. MR 0380743
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_51-2010-3_8.pdf 234.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo