Previous |  Up |  Next

Article

Title: Neochromatica (English)
Author: Cheilaris, Panagiotis
Author: Specker, Ernst
Author: Zachos, Stathis
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 51
Issue: 3
Year: 2010
Pages: 469-480
Summary lang: English
.
Category: math
.
Summary: We create and discuss several modifications to traditional graph coloring. In particular, we classify various notions of coloring in a proper hierarchy. We concentrate on grid graphs whose colorings can be represented by natural number entries in arrays with various restrictions. (English)
Keyword: graph coloring
Keyword: paths
Keyword: conflict-free
MSC: 05C15
MSC: 05C65
MSC: 68R10
idZBL: Zbl 1224.05164
idMR: MR2741880
.
Date available: 2010-09-02T14:18:43Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/140723
.
Reference: [1] Allouche J.-P., Shallit J.: Automatic Sequences: Theory, Applications, Generalizations.Cambridge University Press, Cambridge, 2003. Zbl 1086.11015, MR 1997038
Reference: [2] Alon N., Grytczuk J., Hałuszczak M., Riordan O.: Nonrepetitive colorings of graphs.Random Structures Algorithms 21 (2002), no. 3–4, 336–346. MR 1945373, 10.1002/rsa.10057
Reference: [3] Alon N., Smorodinsky S.: Conflict-free colorings of shallow discs.Internat. J. Comput. Geom. Appl. 18 (2008), no. 6, 599–604. Zbl 1184.05038, MR 2479564, 10.1142/S0218195908002775
Reference: [4] Bar-Noy A., Cheilaris P., Lampis M., Mitsou V., Zachos S.: Ordered coloring grids and related graphs.Proceedings of the 16th International Colloquium on Structural Information and Communication Complexity (SIROCCO), 2009, pp. 30–43. MR 2671334
Reference: [5] Bar-Noy A., Cheilaris P., Smorodinsky S.: Deterministic conflict-free coloring for intervals: from offline to online.ACM Trans. Algorithms 4 (2008), no. 4, 18pp. MR 2446963, 10.1145/1383369.1383375
Reference: [6] Cheilaris P.: Conflict-free coloring.Ph.D. thesis, City University of New York, 2009.
Reference: [7] Chen K., Fiat A., Kaplan H., Levy M., Matoušek J., Mossel E., Pach J., Sharir M., Smorodinsky S., Wagner U., Welzl E.: Online conflict-free coloring for intervals.SIAM J. Comput. 36 (2007), no. 5, 1342–1359. MR 2284084, 10.1137/S0097539704446682
Reference: [8] Currie J.D.: There are ternary circular square-free words of length $n$ for $n \geq 18$.Electron. J. Combin. 9 (2002), no. 1, N10. Zbl 1057.68081, MR 1936865
Reference: [9] Djidjev H.N.: On the problem of partitioning planar graphs.SIAM J. Algebraic Discrete Methods 3 (1982), 229–240. Zbl 0503.05057, MR 0655563, 10.1137/0603022
Reference: [10] Erlebach T., Pagourtzis A., Potika K., Stefanakos S.: Resource allocation problems in multifiber WDMtree networks.Proceedings of 29th Workshop on Graph Theoretic Concepts in Computer Science (WG 2003), Lecture Notes in Comput. Sci., 2880, Berlin, 2003, pp. 218–229. MR 2080082
Reference: [11] Even G., Lotker Z., Ron D., Smorodinsky S.: Conflict-free colorings of simple geometric regions with applications to frequency assignment in cellular networks.SIAM J. Comput. 33 (2003), 94–136. Zbl 1069.68120, MR 2033655, 10.1137/S0097539702431840
Reference: [12] Grytczuk J.: Nonrepetitive graph coloring.Graph Theory, Trends in Mathematics, Birkhäuser, Basel, 2007, pp. 209–218. Zbl 1120.05029, MR 2279177
Reference: [13] Har-Peled S., Smorodinsky S.: Conflict-free coloring of points and simple regions in the plane.Discrete Comput. Geom. 34 (2005), 47–70. Zbl 1066.05064, MR 2140882, 10.1007/s00454-005-1162-6
Reference: [14] Iyer A.V., Ratliff H.R., Vijayan G.: Optimal node ranking of trees.Inform. Process. Lett. 28 (1988), 225–229. Zbl 0661.68063, MR 0958825, 10.1016/0020-0190(88)90194-9
Reference: [15] Jordan C.: Sur les assemblages de lignes.J. Reine Angew. Math. 70 (1869), 185–190.
Reference: [16] Katchalski M., McCuaig W., Seager S.: Ordered colourings.Discrete Math. 142 (1995), 141–154. Zbl 0842.05032, MR 1341442, 10.1016/0012-365X(93)E0216-Q
Reference: [17] Lewis P.M. II, Stearns R.E., Hartmanis J.: Memory bounds for recognition of context-free and context-sensitive languages.Proceedings of the Sixth Annual Symposium on Switching Circuit Theory and Logical Design, Ann Arbor, MI, 1965, pp. 191–202. Zbl 0272.68054
Reference: [18] Lipton R.J., Tarjan R.E.: A separator theorem for planar graphs.SIAM J. Appl. Math. 36 (1979), no. 2, 177–189. Zbl 0432.05022, MR 0524495, 10.1137/0136016
Reference: [19] Nešetřil J., Ossona de Mendez P.: Tree-depth, subgraph coloring and homomorphism bounds.European J. Combin. 27 (2006), 1022–1041. MR 2226435, 10.1016/j.ejc.2005.01.010
Reference: [20] Nešetřil J., Ossona de Mendez P., Wood D.R.: Characterisations and examples of graph classes with bounded expansion.CoRR abs/0902.3265 (2009).
Reference: [21] Pach J., Tóth G.: Conflict Free Colorings.Discrete and Computational Geometry, The Goodman-Pollack Festschrift, Springer, Berlin, 2003, pp. 665–671. MR 2038496
Reference: [22] Pezarski A., Zmarz M.: Non-repetitive $3$-coloring of subdivided graphs.Electron. J. Combin. 16 (2009), N15. Zbl 1165.05325, MR 2515755
Reference: [23] Prouhet E.: Mémoire sur quelques relations entre les puissances des nombres.Comptes Rendus de l'Académie des Sciences, Paris, Série I 33 (1851), 225.
Reference: [24] Schäffer A.A.: Optimal node ranking of trees in linear time.Inform. Process. Lett. 33 (1989), no. 2, 91–96. MR 1031599, 10.1016/0020-0190(89)90161-0
Reference: [25] Thue A.: Über unendliche Zeichenreihen.Norske vid. Selsk. Skr. Mat. Nat. Kl 7 (1906), 1–22.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_51-2010-3_9.pdf 308.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo