Previous |  Up |  Next

Article

Title: Functor of extension of $\Lambda$-isometric maps between central subsets of the unbounded Urysohn universal space (English)
Author: Niemiec, Piotr
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 51
Issue: 3
Year: 2010
Pages: 541-549
Summary lang: English
.
Category: math
.
Summary: The aim of the paper is to prove that in the unbounded Urysohn universal space $\mathbb U$ there is a functor of extension of $\Lambda $-isometric maps (i.e. dilations) between central subsets of $\mathbb U$ to $\Lambda $-isometric maps acting on the whole space. Special properties of the functor are established. It is also shown that the multiplicative group $\mathbb R \setminus \{0\}$ acts continuously on $\mathbb U$ by $\Lambda $-isometries. (English)
Keyword: Urysohn's universal space
Keyword: ultrahomogeneous spaces
Keyword: functor
Keyword: extensions of isometries
MSC: 54C20
MSC: 54E40
MSC: 54E50
idZBL: Zbl 1224.54044
idMR: MR2741886
.
Date available: 2010-09-02T14:24:06Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/140729
.
Reference: [1] Cameron P.J., Vershik A.M.: Some isometry groups of Urysohn space.Ann. Pure Appl. Logic 143 (2006), no. 1–3, 70–78. MR 2258622, 10.1016/j.apal.2005.08.001
Reference: [2] Gao S., Kechris A.S.: On the classification of Polish metric spaces up to isometry.Mem. Amer. Math. Soc. 161 (2003), viii+78 pp. Zbl 1012.54038, MR 1950332
Reference: [3] Holmes M.R.: The universal separable metric space of Urysohn and isometric embeddings thereof in Banach spaces.Fund. Math. 140 (1992), 199–223. Zbl 0772.54022, MR 1173763
Reference: [4] Holmes M.R.: The Urysohn space embeds in Banach spaces in just one way.Topology Appl. 155 (2008), no. 14, 1479–1482. Zbl 1149.54007, MR 2435143, 10.1016/j.topol.2008.03.013
Reference: [5] Huhunaišvili G.E.: On a property of Urysohn's universal metric space.(Russian), Dokl. Akad. Nauk. USSR (N.S.) 101 (1955), 332–333.
Reference: [6] Katětov M.: On universal metric spaces.in General Topology and its Relations to Modern Analysis and Algebra VI, Proceedings of the Sixth Prague Topological Symposium 1986, Z. Frolík (ed.), Helderman Verlag, Berlin, 1988, pp. 323–330. MR 0952617
Reference: [7] Melleray J.: On the geometry of Urysohn's universal metric space.Topology Appl. 154 (2007), 384–403. Zbl 1113.54017, MR 2278687, 10.1016/j.topol.2006.05.005
Reference: [8] Melleray J.: Some geometric and dynamical properties of the Urysohn space.Topology Appl. 155 (2008), no. 14, 1531–1560. MR 2435148, 10.1016/j.topol.2007.04.029
Reference: [9] Niemiec P.: Central subsets of Urysohn universal spaces.Comment. Math. Univ. Carolin. 50 (2009), 445–461. MR 2573417
Reference: [10] Niemiec P.: Functor of extension of contractions on Urysohn universal spaces.Appl. Categ. Struct., doi:10.1007/s10485-009-9218-z.
Reference: [11] Niemiec P.: Functor of continuation in Hilbert cube and Hilbert space.to appear.
Reference: [12] Pestov V.: Forty-plus annotated questions about large topological groups.in Open Problems in Topology II (Elliot Pearl, ed.), Elsevier B.V., Amsterdam, 2007, pp. 439–450.
Reference: [13] Urysohn P.S.: Sur un espace métrique universel.C.R. Acad. Sci. Paris 180 (1925), 803–806.
Reference: [14] Urysohn P.S.: Sur un espace métrique universel.Bull. Sci. Math. 51 (1927), 43–64, 74–96.
Reference: [15] Uspenskij V.V.: On the group of isometries of the Urysohn universal metric space.Comment. Math. Univ. Carolin. 31 (1990), no. 1, 181–182. Zbl 0699.54011, MR 1056185
Reference: [16] Uspenskij V.V.: The Urysohn universal metric space is homeomorphic to a Hilbert space.Topology Appl. 139 (2004), no. 1–3, 145–149. Zbl 1062.54036, MR 2051102, 10.1016/j.topol.2003.09.008
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_51-2010-3_15.pdf 246.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo