Previous |  Up |  Next

Article

Title: Martin's Axiom and $\omega$-resolvability of Baire spaces (English)
Author: Casarrubias-Segura, Fidel
Author: Hernández-Hernández, Fernando
Author: Tamariz-Mascarúa, Ángel
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 51
Issue: 3
Year: 2010
Pages: 519-540
Summary lang: English
.
Category: math
.
Summary: We prove that, assuming MA, every crowded $T_0$ space $X$ is $\omega$-resolvable if it satisfies one of the following properties: (1) it contains a $\pi$-network of cardinality $< \frak{c}$ constituted by infinite sets, (2) $\chi(X) < \frak{c}$, (3) $X$ is a $T_2$ Baire space and $c(X) \leq \aleph_0$ and (4) $X$ is a $T_1$ Baire space and has a network $\Cal{N}$ with cardinality $< \frak{c}$ and such that the collection of the finite elements in it constitutes a $\sigma$-locally finite family. Furthermore, we prove that the existence of a $T_1$ Baire irresolvable space is equivalent to the existence of a $T_1$ Baire $\omega$-irresolvable space, and each of these statements is equivalent to the existence of a $T_1$ almost-$\omega$-irresolvable space. Finally, we prove that the minimum cardinality of a $\pi$-network with infinite elements of a space $\operatorname{Seq}(u_t)$ is strictly greater than $\aleph_0$. (English)
Keyword: Martin's Axiom
Keyword: Baire spaces
Keyword: resolvable spaces
Keyword: $\omega$-resolvable spaces
Keyword: almost resolvable spaces
Keyword: almost-$\omega$-resolvable spaces
Keyword: infinite $\pi$-network
MSC: 54A10
MSC: 54A35
MSC: 54D10
MSC: 54E52
idZBL: Zbl 1224.54068
idMR: MR2741885
.
Date available: 2010-09-02T14:23:08Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/140728
.
Reference: [1] Alas O., Sanchis M., Tkačhenko M.G., Tkachuk V.V., Wilson R.G.: Irresolvable and submaximal spaces: Homogeneity versus $\sigma$discreteness and new ZFC examples.Topology Appl. 107 (2000), 259–273. MR 1779814
Reference: [2] Angoa J., Ibarra M., Tamariz-Mascarúa Á.: On $\omega$-resolvable and almost-$\omega$-resolvable spaces.Comment. Math. Univ. Carolin. 49 (2008), 485–508. Zbl 1212.54069, MR 2490442
Reference: [3] Bell M., Kunen K.: On the $\pi$-character of ultrafilters.C.T. Math. Rep. Acad. Sci. Canada 3 (1981), 351–356. Zbl 0475.54001, MR 0642449
Reference: [4] Biernias J., Terepeta M.: A sufficient condition for maximal resolvability of topological spaces.Comment. Math. Univ. Carolin. 41 (2004), 139–144. MR 2076865
Reference: [5] Bolstein R.: Sets of points of discontinuity.Proc. Amer. Math. Soc. 38 (1973), 193–197. Zbl 0232.54014, MR 0312457, 10.1090/S0002-9939-1973-0312457-9
Reference: [6] Comfort W.W., Feng L.: The union of resolvable spaces is resolvable.Math. Japonica 38 (1993), 413–114. Zbl 0769.54002, MR 1221007
Reference: [7] Comfort W.W., García-Ferreira S.: Resolvability: a selective survey and some new results.Topology Appl. 74 (1996), 149–167. MR 1425934, 10.1016/S0166-8641(96)00052-1
Reference: [8] van Douwen E.K.: Applications of maximal topologies.Topology Appl. 51 (1993), 125–139. Zbl 0845.54028, MR 1229708, 10.1016/0166-8641(93)90145-4
Reference: [9] El'kin A.G.: On the maximal resolvability of products of topological spaces.Soviet Math. Dokl. 10 (1969), 659–662. Zbl 0199.57302, MR 0248726
Reference: [10] El'kin A.G.: Resolvable spaces which are not maximally resolvable.Moscow Univ. Math. Bull. 24 (1969), 116–118. Zbl 0183.51204, MR 0256331
Reference: [11] Feng L.: Strongly exactly $n$-resolvable spaces of arbitrary large dispersion character.Topology Appl. 105 (2000), 31–36. MR 1761084, 10.1016/S0166-8641(99)00034-6
Reference: [12] Foran J., Liebnits P.: A characterization of almost resolvable spaces.Rend. Circ. Mat. Palermo (2) 40 (1991), 136–141. MR 1119751, 10.1007/BF02846366
Reference: [13] Feng L., Masaveu O.: Exactly $n$-resolvable spaces and $\omega$-resolvability.Math. Japonica 50 (1999), 333–339. Zbl 0998.54026, MR 1727655
Reference: [14] Hewitt E.: A problem of set-theoretic topology.Duke Math. J. 10 (1943), 306–333. Zbl 0060.39407, MR 0008692, 10.1215/S0012-7094-43-01029-4
Reference: [15] Illanes A.: Finite and $\omega$-resolvability.Proc. Amer. Math. Soc. 124 (1996), 1243–1246. Zbl 0856.54010, MR 1327020, 10.1090/S0002-9939-96-03348-5
Reference: [16] Katětov M.: On topological spaces containing no disjoint dense sets.Mat. Sb. 21 (1947), 3–12. MR 0021679
Reference: [17] Kunen K.: Set Theory. An Introduction to Independence Proofs.Studies in Logic and the Foundations of Mathematics, 102, North Holland, sixth impression (1995), Amsterdam, London, New York, Tokyo. MR 0597342
Reference: [18] Kunen K., Tall F.: On the consistency of the non-existence of Baire irresolvable spaces.Topology Atlas, http://at.yorku.ca/v/a/a/a/27.htm (1998).
Reference: [19] Kunen K., Szymansky A., Tall F.: Baire irresolvable spaces and ideal theory.Ann. Math. Silesiana 2 (14) (1986), 98-107. MR 0861505
Reference: [20] Lindgren W.F., Szymanski A.A.: A non-pseudocompact product of countably compact spaces via Seq.Proc. Amer. Math. Soc. 125 (1997), 3741–3746. Zbl 0891.54010, MR 1415350, 10.1090/S0002-9939-97-04013-6
Reference: [21] Malykhin V.I.: On extremally disconnected topological groups.Soviet Math. Dokl. 16 (1975), 21–25.
Reference: [22] Malykhin V.I.: On the resolvability of the product of two spaces and a problem of Katětov.Dokl. Akad. Nauk SSSR 222 (1975), 765–729. Zbl 0325.54017
Reference: [23] Malykhin V.I.: Irresolvable countable spaces of weight less than $\frak{c}$.Comment. Math. Univ. Carolin. 40 1 (1999), 181–185. MR 1715211
Reference: [24] Pavlov O.: On resolvability of topological spaces.Topology Appl. 126 (2002), 37-47. Zbl 1012.54004, MR 1934251, 10.1016/S0166-8641(02)00004-4
Reference: [25] Pytke'ev E.G.: On maximally resolvable spaces.Proc. Steklov. Inst. Math. 154 (1984), 225–230.
Reference: [26] Tamariz-Mascarúa Á., Villegas-Rodríguez H.: Spaces of continuous functions, box products and almost-$\omega$-resolvable spaces.Comment. Math. Univ. Carolin. 43 4 (2002), 687–705. Zbl 1090.54011, MR 2045790
Reference: [27] Vaughan J.E.: Two spaces homeomorphic to $Seq(p)$.manuscript (). Zbl 1053.54033
Reference: [28] Villegas L.M.: On resolvable spaces and groups.Comment. Math. Univ. Carolin. 36 (1995), 579–584. Zbl 0837.22001, MR 1364498
Reference: [29] Villegas L.M.: Maximal resolvability of some topological spaces.Bol. Soc. Mat. Mexicana 5 (1999), 123–136. Zbl 0963.22001, MR 1692526
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_51-2010-3_14.pdf 338.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo