Title:
|
Some common fixed point theorems in normed linear spaces (English) |
Author:
|
Bosede, Alfred Olufemi |
Language:
|
English |
Journal:
|
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica |
ISSN:
|
0231-9721 |
Volume:
|
49 |
Issue:
|
1 |
Year:
|
2010 |
Pages:
|
17-24 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper, we establish some generalizations to approximate common fixed points for selfmappings in a normed linear space using the modified Ishikawa iteration process with errors in the sense of Liu [10] and Rafiq [14]. We use a more general contractive condition than those of Rafiq [14] to establish our results. Our results, therefore, not only improve a multitude of common fixed point results in literature but also generalize some of the results of Berinde [3], Rhoades [15] and recent results of Rafiq [14]. (English) |
Keyword:
|
Common fixed point |
Keyword:
|
contractive condition |
Keyword:
|
Mann and Ishikawa iterations |
MSC:
|
47H10 |
MSC:
|
54H25 |
idZBL:
|
Zbl 05978034 |
idMR:
|
MR2797519 |
. |
Date available:
|
2010-09-13T06:52:07Z |
Last updated:
|
2013-09-18 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140733 |
. |
Reference:
|
[1] Berinde, V.: A priori and a posteriori error estimates for a class of $\varphi $-contractions.Bulletins for Applied and Computing Math. (1999), 183–192. |
Reference:
|
[2] Berinde, V.: Iterative Approximation of Fixed Points.Editura Efemeride, Baia Mare, 2002. Zbl 1036.47037, MR 1995230 |
Reference:
|
[3] Berinde, V.: On the convergence of the Ishikawa iteration in the class of quasi-contractive operators.Acta Math. Univ. Comenianae 73, 1 (2004), 119–126. Zbl 1100.47054, MR 2076050 |
Reference:
|
[4] Chatterjea, S. K.: Fixed point theorems.C. R. Acad. Bulgare Sci. 25 (1972), 727–730. Zbl 0274.54033, MR 0324493 |
Reference:
|
[5] Das, G., Debata, J. P.: Fixed points of Quasi-nonexpansive mappings.Indian J. Pure and Appl. Math. 17 (1986), 1263–1269. MR 0868962 |
Reference:
|
[6] Ishikawa, S.: Fixed points by a new iteration method.Proc. Amer. Math. Soc. 44 (1974), 147–150. Zbl 0286.47036, MR 0336469, 10.1090/S0002-9939-1974-0336469-5 |
Reference:
|
[7] Kannan, R.: Some results on fixed points.Bull. Calcutta Math. Soc. 10 (1968), 71–76. Zbl 0209.27104, MR 0257837 |
Reference:
|
[8] Kannan, R.: Some results on fixed points III.Fund. Math. 70 (1971), 169–177. Zbl 0246.47065, MR 0283649 |
Reference:
|
[9] Kannan, R.: Construction of fixed points of class of nonlinear mapppings.J. Math. Anal. Appl. 41 (1973), 430–438. MR 0320837, 10.1016/0022-247X(73)90218-7 |
Reference:
|
[10] Liu, L. S.: Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces.J. Math. Anal. Appl. 194, 1 (1995), 114–125. Zbl 0872.47031, MR 1353071, 10.1006/jmaa.1995.1289 |
Reference:
|
[11] Mann, W. R.: Mean value methods in iterations.Proc. Amer. Math. Soc. 4 (1953), 506–510. MR 0054846, 10.1090/S0002-9939-1953-0054846-3 |
Reference:
|
[12] Osilike, M. O.: Short proofs of stability results for fixed point iteration procedures for a class of contractive-type mappings.Indian J. Pure Appl. Math. 20, 12 (1999), 1229–1234. Zbl 0955.47038, MR 1729212 |
Reference:
|
[13] Osilike, M. O.: Stability results for fixed point iteration procedures.J. Nigerian Math. Soc. 14/15 (1995/96), 17–29. MR 1775011 |
Reference:
|
[14] Rafiq, A.: Common fixed points of quasi-contractive-operators.General Mathematics 16, 2 (2008), 49–58. Zbl 1235.47073, MR 2439234 |
Reference:
|
[15] Rhoades, B. E.: Fixed point iteration using infinite matrices.Trans. Amer. Math. Soc. 196 (1974), 161–176. Zbl 0267.47032, MR 0348565, 10.1090/S0002-9947-1974-0348565-1 |
Reference:
|
[16] Rhoades, B. E.: Comments on two fixed point iteration method.J. Math. Anal. Appl. 50, 2 (1976), 741–750. MR 0430880, 10.1016/0022-247X(76)90038-X |
Reference:
|
[17] Rhoades, B. E.: A comparison of various definitions of contractive mappings.Trans. Amer. Math. Soc. 226 (1977), 257–290. Zbl 0365.54023, MR 0433430, 10.1090/S0002-9947-1977-0433430-4 |
Reference:
|
[18] Rus, I. A.: Generalized Contractions and Applications.Cluj University Press, Cluj-Napoca, 2001. Zbl 0968.54029, MR 1947742 |
Reference:
|
[19] Rus, I. A., Petrusel, A., Petrusel, G.: Fixed Point Theory: 1950-2000, Romanian Contributions.House of the Book of Science, Cluj-Napoca, 2002. Zbl 1005.54037, MR 1947195 |
Reference:
|
[20] Takahashi, W.: Iterative methods for approximation of fixed points and their applications.J. Oper. Res. Soc. Jpn. 43, 1 (2000), 87–108. Zbl 1004.65069, MR 1768388, 10.1016/S0453-4514(00)88753-0 |
Reference:
|
[21] Takahashi, W., Tamura, T.: Convergence theorems for a pair of nonexpansive mappings.J. Convex Analysis 5, 1 (1995), 45–58. MR 1649417 |
Reference:
|
[22] Xu, Y.: Ishikawa and Mann iteration process with errors for nonlinear strongly accretive operator equations.J. Math. Anal. Appl. 224 (1998), 91–101. 10.1006/jmaa.1998.5987 |
Reference:
|
[23] Zamfirescu, T.: Fix point theorems in metric spaces.Arch. Math. (Basel) 23 (1972), 292–298. Zbl 0239.54030, MR 0310859, 10.1007/BF01304884 |
Reference:
|
[24] Zeidler, E.: Nonlinear Functional Analysis and its Applications, I.Fixed Point Theorems, Springer, New York, 1986. Zbl 0583.47050, MR 0816732 |
. |