Previous |  Up |  Next

Article

Title: The multicores in metric spaces and their application in fixed point theory (English)
Author: Ślosarski, Mirosław
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 49
Issue: 1
Year: 2010
Pages: 75-94
Summary lang: English
.
Category: math
.
Summary: This paper discusses the notion, the properties and the application of multicores, i.e. some compact sets contained in metric spaces. (English)
Keyword: Lefschetz number
Keyword: fixed point
Keyword: topological vector spaces
Keyword: Klee admissible spaces
Keyword: absolute neighborhood multi-retracts
Keyword: approximative absolute neighborhood multi-retracts
Keyword: multicore
MSC: 47H10
MSC: 54C55
MSC: 54H25
MSC: 55M20
idZBL: Zbl 1253.55002
idMR: MR2797525
.
Date available: 2010-09-13T06:58:01Z
Last updated: 2013-09-18
Stable URL: http://hdl.handle.net/10338.dmlcz/140739
.
Reference: [1] Agarwal, G. P., O’Regan, D.: A note on the Lefschetz fixed point theorem for admissible spaces.Bull. Korean Math. Soc. 42, 2 (2005), 307–313. Zbl 1089.47040, MR 2153878, 10.4134/BKMS.2005.42.2.307
Reference: [2] Andres, J., Górniewicz, L.: Topological principles for boundary value problems.Kluwer, Dordrecht, 2003.
Reference: [3] Bogatyi, S. A.: Approximative and fundamental retracts.Math. USSR Sb. 22 (1974), 91–103. MR 0336695, 10.1070/SM1974v022n01ABEH001687
Reference: [4] Borsuk, K.: Theory of Shape.Lect. Notes Ser. 28, Matematisk Institut, Aarhus Universitet, Aarhus, 1971. Zbl 0232.55021, MR 0293602
Reference: [5] Clapp, M. H.: On a generalization of absolute neighborhood retracts.Fund. Math. 70 (1971), 117–130. Zbl 0231.54012, MR 0286081
Reference: [6] Eilenberg, S., Steenrod, N.: Foundations of Algebraic Topology.New Jersey Princeton University Press, Princeton, 1952. Zbl 0047.41402, MR 0050886
Reference: [7] Fournier, G., Granas, A.: The Lefschetz fixed point theorem for some classes of non-metrizable spaces.J. Math. Pures et Appl. 52 (1973), 271–284. Zbl 0294.54034, MR 0339116
Reference: [8] Górniewicz, L.: Topological methods in fixed point theory of multi-valued mappings.Springer, New York–Berlin–Heidelberg, 2006.
Reference: [9] Górniewicz, L., Rozpłoch-Nowakowska, D.: The Lefschetz fixed point theory for morphisms in topological vector spaces.Topological Methods in Nonlinear Analysis, Journal of the Juliusz Schauder Center 20 (2002), 315–333. Zbl 1031.55002, MR 1962224
Reference: [10] Górniewicz, L., Ślosarski, M.: Once more on the Lefschetz fixed point theorem.Bull. Polish Acad. Sci. Math. 55 (2007), 161–170. Zbl 1122.55002, MR 2318637, 10.4064/ba55-2-7
Reference: [11] Górniewicz, L., Ślosarski, M.: Fixed points of mappings in Klee admissible spaces.Control and Cybernetics 36, 3 (2007). MR 2376056
Reference: [12] Granas, A.: Generalizing the Hopf–Lefschetz fixed point theorem for non-compact ANR’s.In: Symp. Inf. Dim. Topol., Baton-Rouge, 1967.
Reference: [13] Granas, A., Dugundji, J.: Fixed Point Theory.Springer, Berlin–Heidelberg–New York, 2003. Zbl 1025.47002, MR 1987179
Reference: [14] Jaworowski, J.: Continuous Homology Properties of Approximative Retracts.Bulletin de L’Academie Polonaise des Sciences 18, 7 (1970). Zbl 0199.26004, MR 0267574
Reference: [15] Krathausen, C., Müller, G., Reinermann, J., Schöneberg, R.: New Fixed Point Theorems for Compact and Nonexpansive Mappings and Applications to Hammerstein Equations.Sonderforschungsbereich 72, Approximation und Optimierung, Universität Bonn, preprint no. 92, 1976.
Reference: [16] Kryszewski, W.: The Lefschetz type theorem for a class of noncompact mappings.Suppl. Rend. Circ. Mat. Palermo 14, 2 (1987), 365–384. Zbl 0641.55002, MR 0920869
Reference: [17] Leray, J., Schauder, J.: Topologie et $\acute{e}$quations fonctionnelles.Ann. Sci. Ecole Norm. Sup. 51 (1934).
Reference: [18] Peitgen, H. O.: On the Lefschetz number for iterates of continuous mappings.Proc. AMS 54 (1976), 441–444. Zbl 0316.55006, MR 0391074
Reference: [19] Skiba, R., Ślosarski, M.: On a generalization of absolute neighborhood retracts.Topology and its Applications 156 (2009), 697–709. Zbl 1166.54008, MR 2492955
Reference: [20] Ślosarski, M.: On a generalization of approximative absolute neighborhood retracts.Fixed Point Theory 10, 2 (2009). Zbl 1185.55002, MR 2569006
Reference: [21] Ślosarski, M.: Fixed points of multivalued mappings in Hausdorff topological spaces.Nonlinear Analysis Forum 13, 1 (2008), 39–48. MR 2808029
.

Files

Files Size Format View
ActaOlom_49-2010-1_8.pdf 491.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo