Previous |  Up |  Next


CFD; multiphase flows; particulate flow; finite elements; subspace projection; rheology
Flow of particles suspended in a fluid can be found in numerous industrial processes utilizing sedimentation, fluidization and lubricated transport such as food processing, catalytic processing, slurries, coating, paper manufacturing, particle injection molding and filter operation. The ability to understand rheology effects of particulate flows is elementary for the design, operation and efficiency of the underlying processes. Despite the fact that particle technology is widely used, it is still an enormous experimental challenge to determine the correct parameters for the process employed. In this paper we present 2-dimensional numerical results for the behavior of a particle based suspension and compare it with analytically results obtained for the Stokes-flow around a single particle.
[1] Bänsch, E.: Local mesh refinement in 2 and 3 dimensions. IMPACT Comput. Sci. Engrg. 3 (1991), 181–191. doi10.1016/0899-8248(91)90006-G. DOI 10.1016/0899-8248(91)90006-G | MR 1141298
[2] Bänsch, E.: Simulation of instationary, incompressible flows. Acta Math. Univ. Comenian. 67 (1997), 1, 101–114. MR 1660818
[3] Bönisch, S., Heuveline, V.: On the numerical simulation of the instationary free fall of a solid in a fluid. 1. The Newtonian case. Comput. Fluids 36 (2007), 1434–1445. DOI 10.1016/j.compfluid.2007.01.010
[4] Chwang, A. T., Wu, T. Yao-Tsu: Hydromechanics of low-reynolds-number flow. Part 2. Singularity method for stokes flows. J. Fluid Mech. 67 (1975), 787–815. DOI 10.1017/S0022112075000614 | MR 0368585
[5] Einstein, A.: Untersuchungen über die Theorie der Brownschen Bewegung. Verlag Harri Deutsch, 1905. Zbl 0936.01034
[6] Feng, J., Hu, H. H., Joseph, D. D.: Direct simulation of initial value problems for the motion of solid bodies in a newtonian fluid. Part 1. Sedimentation. J. Fluid Mech. 261 (1994), 95–134. DOI 10.1017/S0022112094000285 | Zbl 0876.76040
[7] Glowinski, R., Pan, T.-W., Hesla, T. I., Joseph, D. D.: A distributed lagrange multiplier/fictitious domain method for particulate flows. Internat. J. Multiphase Flow 25 (1999), 755–794. doi10.1016/S0301-9322(98)00048-2. DOI 10.1016/S0301-9322(98)00048-2 | Zbl 1137.76592
[8] Guermond, J. L., Shen, J.: On the error estimates for the rotational pressure-correction projection methods. Math. Comp. 73 (2004), 1719–1737. DOI 10.1090/S0025-5718-03-01621-1 | MR 2059733 | Zbl 1093.76050
[9] Hu, H. H.: Direct simulation of flows of solid-liquid mixtures. Internat. J. Multiphase Flow 22 (1996), 2, 335–352. DOI 10.1016/0301-9322(95)00068-2 | Zbl 1135.76442
[10] Jeffrey, D. J., Acrivos, A.: The rheological properties of suspensions of rigid particles. AIChe J. 22 (1976), 417–432. DOI 10.1002/aic.690220303
[11] Martys, N. S., Mountain, R. D.: Velocity Verlet algorithm for dissipative-particle-dynamics-based models of suspensions. Phys. Rev. E 59 (1999), 3, 3733–3736. DOI 10.1103/PhysRevE.59.3733
[12] Titcombe, M. S., Ward, M. J., Kropinski, M. C.: A hybrid method for low reynolds number flow past an asymmetric cylindrical body. SIAM J. Appl. Math. 55 (1994), 1484–1510. Zbl 1136.76345
[13] Tritton, D. J.: Experiments on the flow past a circular cylinder at low reynolds numbers. J. Fluid Mech. 6 (1959), 547–567. DOI 10.1017/S0022112059000829
[14] Wan, D., Turek, S.: Fictitious boundary and moving mesh methods for the numerical simulation of rigid particulate flows. J. Comput. Phys. 222 (2007), 28–56. DOI 10.1016/ | MR 2298035
Partner of
EuDML logo