Previous |  Up |  Next

Article

Title: Numerical simulation of suspension induced rheology (English)
Author: Prignitz, Rodolphe
Author: Bänsch, Eberhard
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 46
Issue: 2
Year: 2010
Pages: 281-293
Summary lang: English
.
Category: math
.
Summary: Flow of particles suspended in a fluid can be found in numerous industrial processes utilizing sedimentation, fluidization and lubricated transport such as food processing, catalytic processing, slurries, coating, paper manufacturing, particle injection molding and filter operation. The ability to understand rheology effects of particulate flows is elementary for the design, operation and efficiency of the underlying processes. Despite the fact that particle technology is widely used, it is still an enormous experimental challenge to determine the correct parameters for the process employed. In this paper we present 2-dimensional numerical results for the behavior of a particle based suspension and compare it with analytically results obtained for the Stokes-flow around a single particle. (English)
Keyword: CFD
Keyword: multiphase flows
Keyword: particulate flow
Keyword: finite elements
Keyword: subspace projection
Keyword: rheology
MSC: 70E55
MSC: 76D05
MSC: 76M10
MSC: 76T20
idZBL: Zbl pre05773709
idMR: MR2663601
.
Date available: 2010-09-13T16:40:28Z
Last updated: 2013-07-30
Stable URL: http://hdl.handle.net/10338.dmlcz/140744
.
Reference: [1] Bänsch, E.: Local mesh refinement in 2 and 3 dimensions.IMPACT Comput. Sci. Engrg. 3 (1991), 181–191. doi10.1016/0899-8248(91)90006-G. MR 1141298, 10.1016/0899-8248(91)90006-G
Reference: [2] Bänsch, E.: Simulation of instationary, incompressible flows.Acta Math. Univ. Comenian. 67 (1997), 1, 101–114. MR 1660818
Reference: [3] Bönisch, S., Heuveline, V.: On the numerical simulation of the instationary free fall of a solid in a fluid.1. The Newtonian case. Comput. Fluids 36 (2007), 1434–1445. 10.1016/j.compfluid.2007.01.010
Reference: [4] Chwang, A. T., Wu, T. Yao-Tsu: Hydromechanics of low-reynolds-number flow.Part 2. Singularity method for stokes flows. J. Fluid Mech. 67 (1975), 787–815. MR 0368585, 10.1017/S0022112075000614
Reference: [5] Einstein, A.: Untersuchungen über die Theorie der Brownschen Bewegung.Verlag Harri Deutsch, 1905. Zbl 0936.01034
Reference: [6] Feng, J., Hu, H. H., Joseph, D. D.: Direct simulation of initial value problems for the motion of solid bodies in a newtonian fluid.Part 1. Sedimentation. J. Fluid Mech. 261 (1994), 95–134. Zbl 0876.76040, 10.1017/S0022112094000285
Reference: [7] Glowinski, R., Pan, T.-W., Hesla, T. I., Joseph, D. D.: A distributed lagrange multiplier/fictitious domain method for particulate flows.Internat. J. Multiphase Flow 25 (1999), 755–794. doi10.1016/S0301-9322(98)00048-2. Zbl 1137.76592, 10.1016/S0301-9322(98)00048-2
Reference: [8] Guermond, J. L., Shen, J.: On the error estimates for the rotational pressure-correction projection methods.Math. Comp. 73 (2004), 1719–1737. Zbl 1093.76050, MR 2059733, 10.1090/S0025-5718-03-01621-1
Reference: [9] Hu, H. H.: Direct simulation of flows of solid-liquid mixtures.Internat. J. Multiphase Flow 22 (1996), 2, 335–352. Zbl 1135.76442, 10.1016/0301-9322(95)00068-2
Reference: [10] Jeffrey, D. J., Acrivos, A.: The rheological properties of suspensions of rigid particles.AIChe J. 22 (1976), 417–432. 10.1002/aic.690220303
Reference: [11] Martys, N. S., Mountain, R. D.: Velocity Verlet algorithm for dissipative-particle-dynamics-based models of suspensions.Phys. Rev. E 59 (1999), 3, 3733–3736. 10.1103/PhysRevE.59.3733
Reference: [12] Titcombe, M. S., Ward, M. J., Kropinski, M. C.: A hybrid method for low reynolds number flow past an asymmetric cylindrical body.SIAM J. Appl. Math. 55 (1994), 1484–1510. Zbl 1136.76345
Reference: [13] Tritton, D. J.: Experiments on the flow past a circular cylinder at low reynolds numbers.J. Fluid Mech. 6 (1959), 547–567. 10.1017/S0022112059000829
Reference: [14] Wan, D., Turek, S.: Fictitious boundary and moving mesh methods for the numerical simulation of rigid particulate flows.J. Comput. Phys. 222 (2007), 28–56. MR 2298035, 10.1016/j.jcp.2006.06.002
.

Files

Files Size Format View
Kybernetika_46-2010-2_5.pdf 887.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo