Previous |  Up |  Next

Article

Title: Stochastic geometric programming with an application (English)
Author: Dupačová, Jitka
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 46
Issue: 3
Year: 2010
Pages: 374-386
Summary lang: English
.
Category: math
.
Summary: In applications of geometric programming, some coefficients and/or exponents may not be precisely known. Stochastic geometric programming can be used to deal with such situations. In this paper, we shall indicate which stochastic programming approaches and which structural and distributional assumptions do not destroy the favorable structure of geometric programs. The already recognized possibilities are extended for a tracking model and stochastic sensitivity analysis is presented in the context of metal cutting optimization. Illustrative numerical results are reported. (English)
Keyword: stochastic geometric programming
Keyword: statistical sensitivity analysis
Keyword: tracking model
Keyword: metal cutting optimization
MSC: 90C15
MSC: 90C31
MSC: 90C90
idZBL: Zbl 1201.90141
idMR: MR2676074
.
Date available: 2010-09-13T16:46:38Z
Last updated: 2013-09-21
Stable URL: http://hdl.handle.net/10338.dmlcz/140753
.
Reference: [1] Akturk, M. S., Gurel, S.: Machining conditions-based preventive maintenance.Intl. J. Production Research 45 (2007), 1725–1743. Zbl 1128.90323, 10.1080/00207540600703587
Reference: [2] Avriel, M., Wilde, D. J.: Stochastic geometric programming.In: Proc. Princeton Sympium of Mathematical Programming (H. W. Kuhn, ed.) Princeton Univ. Press 1970. Zbl 0264.90037, MR 0332171
Reference: [3] Bazaraa, M. S., Sherali, H. D., Shetty, C. M.: Nonlinear Programming (Theory and Algorithms).Second edition. Wiley, New York 1993. Zbl 1140.90040, MR 2218478
Reference: [4] al., S. Boyd et: A tutorial on geometric programming.Optimization and Engineering 8 (2007), 67–127. Zbl 1178.90270, MR 2330467, 10.1007/s11081-007-9001-7
Reference: [5] Chakrabarti, K. K.: Cost of surface finish – A general optimisation approach.In: Proc. 12th AIMTDR Conference, Delhi, Tata Mc Graw-Hill Publ., New Delhi 1986, pp. 504–507.
Reference: [6] Dupačová, J.: Stability in stochastic programming with recourse – Estimated parameters.Math. Progr. 28 (1984), 72–83. MR 0727419, 10.1007/BF02612713
Reference: [7] Dupačová, J., Charamza, P., Mádl, J.: On stochastic aspects of a metal cutting problem.In: Stochastic Programming: Numerical Methods and Engineering Applications (P. Kall and K. Marti, eds.), LNEMS 423, Springer, Berlin 1995, pp. 196–209.
Reference: [8] Dupačová, J., Charamza, P., Mádl, J.: On stochastic aspects of a metal cutting problem.In: Operations Research Proceedings 1994 (U. Derigs, A. Bachem, and A. Drexl, eds.), Springer, Berlin 1995, pp. 28–32.
Reference: [9] Ellner, P. M., Stark, R. M.: On the distribution of the optimal value for a class of stochastic geometric programs.Naval Res. Log. Quart. 27 (1980), 549–571. Zbl 0447.90072, MR 0600422, 10.1002/nav.3800270404
Reference: [10] Fiacco, A. V.: Introduction to Sensitivity and Stability Analysis in Nonlinear Programming.Academic Press, New York 1983. Zbl 0543.90075, MR 0721641
Reference: [11] Hsiung, K-L., Kim, S-J., Boyd, S.: Power Allocation with Outage Probability Specifications in Wireless Shadowed Fading Channels via Geometric Programming.Research Report, Information Systems Laboratory, Stanford University 2008.
Reference: [12] al., K. Iwata et: A probabilistic approach to the determination of the optimal cutting conditions.J. Engrg. Industry Trans. ASME 94 (1972), 1099–1107. 10.1115/1.3428310
Reference: [13] Jagannathan, R.: A stochastic geometric programming problem with multiplicative recourse.Oper. Res. Lett. 9 (1990), 99–104. Zbl 0703.90069, MR 1049818, 10.1016/0167-6377(90)90048-A
Reference: [14] Jefferson, T. R., Scott, C. H.: Quadratic geometric programming with application to machining economics.Math. Progr. 31 (1985), 137–152. Zbl 0558.90074, MR 0777288, 10.1007/BF02591746
Reference: [15] Jha, N. K.: Probabilistic cost estimation in advance of production in a computerized manufacturing system through stochastic geometric programming.Computers Ind. Engrg. 30 (1996), 809–821. 10.1016/0360-8352(96)00033-2
Reference: [16] Kavan, J.: Optimisation of Cutting Conditions on Automatic Production Lines (in Czech).PhD Dissertation, Czech Technical University, Prague 2003.
Reference: [17] Kyparisis, J.: Sensitivity analysis in geometric programming: Theory and computations.Ann. Oper. Res. 27 (1990), 39–64. Zbl 0813.90113, MR 1088986, 10.1007/BF02055189
Reference: [18] Mukherjee, S. K., Pal, M. N.: Application of complimentary geometric programming technique in optimisation of a multipass turning operation.In: Proc. 12th AIMTDR Conference, Delhi, Tata Mc Graw-Hill Publ., New Delhi 1986, pp. 487–489.
Reference: [19] Rao, S.: Engineering Optimization: Theory and Practice.Third edition. Wiley-Interscience, New York 1996.
Reference: [20] Scott, C. H., Jefferson, T. R., Lee, A.: Stochastic management via composite geometric programming.Optimization 36 (1996), 59–74. MR 1417877, 10.1080/02331939608844165
Reference: [21] Stark, R. M.: On zero-degree stochastic geometric programs.J. Optim. Theory Appl. 23 (1977), 167–187. Zbl 0343.90035, MR 0465189, 10.1007/BF00932305
Reference: [22] Taylor, F. W.: On the art of cutting metals.Trans. ASME 28 (1907), 31–35.
Reference: [23] Wiebking, R. D.: Optimal engineering design under uncertainty by geometric programming.Management Sci. 6 (1977), 644–651. Zbl 0356.90073, 10.1287/mnsc.23.6.644
.

Files

Files Size Format View
Kybernetika_46-2010-3_3.pdf 478.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo