Previous |  Up |  Next

Article

Keywords:
quasi-linear ordinary differential equation of higher order; existence of non-oscillatory solution; oscillatory solution
Summary:
Sufficient conditions are formulated for existence of non-oscillatory solutions to the equation $$y^{(n)}+\sum _{j=0}^{n-1}a_j(x)y^{(j)}+p(x)|y|^k \mathop {\rm sgn} y =0$$ with $ n\ge 1$, real (not necessarily natural) $k>1$, and continuous functions $p(x)$ and $a_j(x)$ defined in a neighborhood of $+\infty $. For this equation with positive potential $p(x)$ a criterion is formulated for existence of non-oscillatory solutions with non-zero limit at infinity. In the case of even order, a criterion is obtained for all solutions of this equation at infinity to be oscillatory. \endgraf Sufficient conditions are obtained for existence of solution to this equation which is equivalent to a polynomial.
References:
[1] Atkinson, F. V.: On second order nonlinear oscillations. Pacif. J. Math. 5 (1955), 643-647. DOI 10.2140/pjm.1955.5.643 | MR 0072316
[2] Astashova, I. V.: Application of dynamical systems to the study of asymptotic properties of solutions to nonlinear higher-order differential equations. J. Math. Sci., New York 126 (2005), 1361-1391. MR 2157611 | Zbl 1093.37005
[3] Astashova, I. V.: Uniform estimates to the positive solutions of quasilinear differential equations of even order. J. Math. Sci., New York 135 (2006), 2616-2624. DOI 10.1007/s10958-006-0133-7 | MR 2271904
[4] Astashova, I. V.: On existence of non-oscillatory solutions to quasi-linear differential equations. Georgian Math. J. 14 (2007), 223-238.
[5] Belohorec, S. A.: A criterion for oscillation and nonoscillation. Acta F. R. N. Univ. Comen. Math. 20 (1969), 75-79. MR 0274855 | Zbl 0225.34019
[6] Kartsatos, A. G.: $N$th order oscillations with middle terms of order $N-2$. Pacific J. Math. 67 (1976), 477-488. DOI 10.2140/pjm.1976.67.477 | MR 0440122
[7] Kiguradze, I. T.: On conditions for oscillation of solutions of the equation $u''+a(t) |u|^n \*\mathop sgnu=0$. Čas. Pěst. Mat. 87 (1962), 492-495 Russian. MR 0181800 | Zbl 0138.33504
[8] Kiguradze, I. T.: On the oscillation of solution of the equation $ d^m/ d t^m+a(t)|u|^n \*\mathop sign u=0$. Mat. Sbornik 65 (1964), 172-187 Russian. MR 0173060 | Zbl 0135.14302
[9] Kiguradze, I. T., Chanturiya, T. A.: Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations. Kluver Academic Publishers, Dordrecht (1993). MR 1220223 | Zbl 0782.34002
[10] Kiguradze, I. T.: On the oscillation criteria for one class of ordinary differential equations. Diff. Uravnenija 28 (1992), 207-219 Russian.
[11] Kondratiev, V. A., Samovol, V. S.: On some asymptotic properties of solutions for the Emden-Fowler type equations. Diff. Uravnenija 17 (1981), 749-750 Russian.
[12] Kusano, T., Naito, M.: Nonlinear oscillation of fourth-order differential equations. Canad. J. Math. 28 (1976), 840-852. DOI 10.4153/CJM-1976-081-0 | MR 0430415 | Zbl 0432.34022
[13] Levin, A. Yu.: Nonoscillation of solutions of the equation $x^{(n)}+p_1(t)x^{(n-1)}+\dots+p_n(t)\* x=0$. Usp. Mat. Nauk. 24 (1969), 43-96 Russian. MR 0254328
[14] Lovelady, D. L.: On the oscillatory behavior of bounded solutions of higher order differential equations. J. Diff. Equations 19 (1975), 167-175. DOI 10.1016/0022-0396(75)90026-1 | MR 0382781 | Zbl 0333.34030
[15] Lovelady, D. L.: An oscillation criterion for a fourth-order integrally superlinear differential equation. Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Natur. 8 (1975), 531-536. MR 0422766 | Zbl 0348.34026
[16] Masci, J. W., Wong, J. S. W.: Oscillation of solutions to second-order nonlinear differential equations. Pacif. J. Math. 24 (1968), 111-117. DOI 10.2140/pjm.1968.24.111 | MR 0224908
[17] Pólya, G.: On the mean-value theorem corresponding to a given linear homogeneous differential equation. Trans. Amer. Math. Soc. 24 (1924), 312-324. DOI 10.2307/1988819 | MR 1501228
[18] Sobol, I. M.: On asymptotical behavior of solutions to linear differential equations. Doklady Akad. Nauk SSSR 61 (1948), 219-222 Russian. MR 0025650
[19] Taylor, W. E. Jr.: Oscillation criteria for certain nonlinear fourth order equations. Internat. J. Math. 6 (1983), 551-557. DOI 10.1155/S0161171283000502 | MR 0712574 | Zbl 0539.34021
[20] Vallée-Poussin, Ch. I. de la: Sur l'équation différentielle linéaire du second ordre. Détermination d'une intégrale par deux valeurs assignées. Extension aux équations d'ordre $n$. J. Math. Pures Appl. 9 (1929), 125-144.
[21] Waltman, P.: Some properties of solutions of $u''+a(t) f(u)=0$. Monatsh. Math. 67 (1963), 50-54. DOI 10.1007/BF01300681 | MR 0147700 | Zbl 0116.29401
[22] Wong, J. S. W.: On second-order nonlinear oscillation. Funkcialaj Ekvacioj 11 (1968), 207-234. MR 0245915 | Zbl 0157.14802
Partner of
EuDML logo