Previous |  Up |  Next

Article

Title: Elastoplastic reaction of a container to water freezing (English)
Author: Krejčí, Pavel
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 135
Issue: 4
Year: 2010
Pages: 423-441
Summary lang: English
.
Category: math
.
Summary: The paper deals with a model for water freezing in a deformable elastoplastic container. The mathematical problem consists of a system of one parabolic equation for temperature, one integrodifferential equation with a hysteresis operator for local volume increment, and one differential inclusion for the water content. The problem is shown to admit a unique global uniformly bounded weak solution. (English)
Keyword: phase transition
Keyword: water
Keyword: ice
Keyword: energy
Keyword: entropy
Keyword: elastoplastic boundary
MSC: 35K85
MSC: 47J40
MSC: 80A22
idZBL: Zbl 1224.80019
idMR: MR2681016
DOI: 10.21136/MB.2010.140833
.
Date available: 2010-11-24T08:29:18Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/140833
.
Reference: [1] Brokate, M., Sprekels, J.: Hysteresis and Phase Transitions.Appl. Math. Sci. 121, Springer, New York (1996). Zbl 0951.74002, MR 1411908, 10.1007/978-1-4612-4048-8_5
Reference: [2] Frémond, M.: Non-Smooth Thermo-Mechanics.Springer, Berlin (2002). MR 1885252
Reference: [3] Frémond, M., Rocca, E.: Well-posedness of a phase transition model with the possibility of voids.Math. Models Methods Appl. Sci. 16 (2006), 559-586. Zbl 1105.80007, MR 2218214, 10.1142/S0218202506001261
Reference: [4] Frémond, M., Rocca, E.: Solid-liquid phase changes with different densities.Q. Appl. Math. 66 (2008), 609-632. Zbl 1157.80385, MR 2465138, 10.1090/S0033-569X-08-01100-0
Reference: [5] Krasnosel'skii, M. A., Pokrovskii, A. V.: Systems with Hysteresis.Springer, Berlin (1989). Zbl 0665.47038, MR 0987431
Reference: [6] Krejčí, P.: Hysteresis operators---a new approach to evolution differential inequalities.Comment. Math. Univ. Carolinae 33 (1989), 525-536. MR 1031870
Reference: [7] Krejčí, P.: Hysteresis, Convexity and Dissipation in Hyperbolic Equations.Gakuto Int. Series. Math. Sci. Appl., Vol. 8, Gakkotosho, Tokyo (1996). MR 2466538
Reference: [8] Krejčí, P., Rocca, E., Sprekels, J.: A bottle in a freezer.SIAM J. Math. Anal. 41 (2009), 1851-1873. Zbl 1202.80014, MR 2564197, 10.1137/09075086X
Reference: [9] Krejčí, P., Rocca, E., Sprekels, J.: Phase separation in a gravity field.(to appear) in DCDS-S. MR 2746380
Reference: [10] Krejčí, P., Rocca, E., Sprekels, J.: Liquid-solid phase transitions in a deformable container.Continuous Media with Microstructure (B. Albers, ed.). Springer, Berlin (2010), 281-296.
Reference: [11] Visintin, A.: Models of Phase Transitions.Progress in Nonlinear Differential Equations and their Applications 28, Birkhäuser, Boston (1996). Zbl 0882.35004, MR 1423808
.

Files

Files Size Format View
MathBohem_135-2010-4_9.pdf 318.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo