Previous |  Up |  Next

Article

Title: Positive solutions for elliptic problems with critical nonlinearity and combined singularity (English)
Author: Chen, Jianqing
Author: Rocha, Eugénio M.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 135
Issue: 4
Year: 2010
Pages: 413-422
Summary lang: English
.
Category: math
.
Summary: Consider a class of elliptic equation of the form $$ -\Delta u - {\lambda \over {|x|^2}}u = u^{2^\ast -1} + \mu u^{-q}\quad \mbox {in} \ \Omega \backslash \{0\} $$ with homogeneous Dirichlet boundary conditions, where $0\in \Omega \subset \mathbb R^N$($N\geq 3$), $0 < q < 1$, $0 < \lambda <(N-2)^2/4$ and $2^\ast = 2N/(N-2)$. We use variational methods to prove that for suitable $\mu $, the problem has at least two positive weak solutions. (English)
Keyword: multiple positive solutions
Keyword: singular nonlinearity
Keyword: critical nonlinearity
Keyword: Hardy term
MSC: 35J20
MSC: 35J65
idZBL: Zbl 1224.35084
idMR: MR2681015
DOI: 10.21136/MB.2010.140832
.
Date available: 2010-11-24T08:28:30Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/140832
.
Reference: [1] Ambrosetti, A., Brezis, H., Cerami, G.: Combined effects of concave and convex nonlinearities in some elliptic problems.J. Functional Analysis 122 (1994), 519-543. Zbl 0805.35028, MR 1276168, 10.1006/jfan.1994.1078
Reference: [2] Brezis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals.Proc. Amer. Math. Soc. 88 (1983), 486-490. Zbl 0526.46037, MR 0699419, 10.2307/2044999
Reference: [3] Catrina, F., Wang, Z. Q.: On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence) and symmetry of extremal functions.Comm. Pure. Appl. Math. 56 (2001), 229-258. Zbl 1072.35506, MR 1794994, 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO;2-I
Reference: [4] Chen, J.: Multiple positive solutions for a class of nonlinear elliptic equation.J. Math. Anal. Appl. 295 (2004), 341-354. MR 2072017, 10.1016/j.jmaa.2004.01.037
Reference: [5] Chen, J., Rocha, E. M.: Four solutions of an inhomogeneous elliptic equation with critical exponent and singular term.Nonlinear Anal., Theory Methods Appl. 71 (2009), 4739-4750. Zbl 1170.35430, MR 2548708, 10.1016/j.na.2009.03.048
Reference: [6] Coclite, M. M., Palmieri, G.: On a singular nonlinear Dirichlet problem.Comm. Partial Differential Equations 14 (1989), 1315-1327. Zbl 0692.35047, MR 1022988, 10.1080/03605308908820656
Reference: [7] Hirano, N., Saccon, C., Shioji, N.: Existence of multiple positive solutions for singular elliptic problems with a concave and convex nonlinearities.Adv. Differential Equations 9 (2004), 197-220. MR 2099611
Reference: [8] Sun, Y., Wu, S., Long, Y.: Combined effects of singular and superlinear nonlinearities in some singular boundary value problems.J. Differential Equations 176 (2001), 511-531. Zbl 1109.35344, MR 1866285, 10.1006/jdeq.2000.3973
Reference: [9] Terracini, S.: On positive entire solutions to a class of equations with singular coefficient and critical exponent.Adv. Differential Equations 1 (1996), 241-264. MR 1364003
.

Files

Files Size Format View
MathBohem_135-2010-4_8.pdf 259.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo