Previous |  Up |  Next

Article

Title: Asymptotic stability condition for stochastic Markovian systems of differential equations (English)
Author: Shmerling, Efraim
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 135
Issue: 4
Year: 2010
Pages: 443-448
Summary lang: English
.
Category: math
.
Summary: Asymptotic stability of the zero solution for stochastic jump parameter systems of differential equations given by ${\rm d} X(t) = A(\xi (t))X(t) {\rm d} t + H(\xi (t))X(t) {\rm d} w(t)$, where $\xi (t)$ is a finite-valued Markov process and w(t) is a standard Wiener process, is considered. It is proved that the existence of a unique positive solution of the system of coupled Lyapunov matrix equations derived in the paper is a necessary asymptotic stability condition. (English)
Keyword: jump parameter system
Keyword: Markov process
Keyword: asymptotic stability
MSC: 34F05
MSC: 47B80
MSC: 60H25
MSC: 93E03
idZBL: Zbl 1224.34182
idMR: MR2681017
DOI: 10.21136/MB.2010.140834
.
Date available: 2010-11-24T08:30:26Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/140834
.
Reference: [1] Bitmead, R. R., Anderson, B. D. O.: Lyapunov techniques for the exponential stability of linear difference equations with random coefficients.IEEE Trans. Autom. Control 25 (1980), 782-787. Zbl 0451.93065, MR 0583456, 10.1109/TAC.1980.1102427
Reference: [2] Blair, W. P. Jr., Sworder, D. D.: Continuous-time regulation of a class of econometric models.IEEE Trans. Systems Man Cyber. 5 (1975), 341-346. Zbl 0302.90013, MR 0469423, 10.1109/TSMC.1975.5408409
Reference: [3] Blankenship, G.: Stability of linear differential equations with random coefficients.IEEE Trans. Autom. Control 22 (1977), 834-838. Zbl 0362.93033, MR 0470386, 10.1109/TAC.1977.1101612
Reference: [4] Blom, H. A. P., Bar-Shalom, Y.: The interacting multiple model algorithm for systems with Markovian switching coefficients.IEEE Trans. Autom. Control 33 (1988), 780-783. Zbl 0649.93065, 10.1109/9.1299
Reference: [5] Costa, O. L. V., Fragoso, M. D.: Stability results for discrete-time linear systems with Markovian jumping parameters.J. Math. Anal. Appl. 179 (1993), 154-178. Zbl 0790.93108, MR 1244955, 10.1006/jmaa.1993.1341
Reference: [6] Souza, C. E. de, Fragoso, M. D.: $H^\infty$ control for linear systems with Markovian jumping parameters.Control Theory Adv. Tech. 9 (1993), 457-466. MR 1236777
Reference: [7] Fang, Y.: A new general sufficient condition for almost sure stability of jump linear systems.IEEE Trans. Autom. Control 42 (1997), 378-382. Zbl 0870.93048, MR 1435826, 10.1109/9.557580
Reference: [8] Feng, X., Loparo, K. A., Ji, Y., Chizeck, H. J.: Stochastic stability properties of jump linear systems.IEEE Trans. Autom. Control 37 (1992), 1884-1892. Zbl 0747.93079, MR 1139614, 10.1109/9.109637
Reference: [9] Fragoso, M. D., Costa, O. L. V.: A unified approach for mean square stability of continuous-time linear systems with Markovian jumping parameters and additive disturbances.SIAM J. Control Optim. 44 (2005), 1165-1191. MR 2177308, 10.1137/S0363012903434753
Reference: [10] Ji, Y., Chizeck, H. J.: Controllability, stabilizability, and continuous-time Markovian jumping linear quadratic control.IEEE Trans. Autom. Control 35 (1990), 777-788. MR 1058362, 10.1109/9.57016
Reference: [11] Ji, Y., Chizeck, H. J.: Jump linear quadratic Gaussian control: steady-state solution and testable conditions.Control Theory Adv. Tech. 6 (1990), 289-319. MR 1080011
Reference: [12] Leizarowitz, A.: Estimates and exact expressions for Lyapunov exponents of stochastic linear differential equations.Stochastics 24 (1988), 335-356. Zbl 0669.34060, MR 0972970, 10.1080/17442508808833523
Reference: [13] Loparo, K. A.: Stochastic stability of coupled linear systems: A survey of method and results.Stochastic Anal. Appl. 2 (1984), 193-228. MR 0746436, 10.1080/07362998408809033
Reference: [14] Mao, X., Yuan, C.: Stochastic Differential Equations with Markovian Switching.Imperial College Press, London (2006). Zbl 1126.60002, MR 2256095
Reference: [15] Mariton, M.: Almost sure and moments stability of jump linear systems.Systems-Control Letts. 11 (1988), 393-397. Zbl 0672.93073, MR 0971460, 10.1016/0167-6911(88)90098-9
Reference: [16] Morozan, T.: Optimal stationary control for dynamic systems with Markov perturbations.Stochastic Anal. Appl. 1 (1983), 219-225. Zbl 0525.93070, MR 0709081, 10.1080/07362998308809016
Reference: [17] Shmerling, E., Hochberg, K. J.: Stability of stochastic jump-parameter semi-Markov linear systems of differential equations.Stochastics 80 (2008), 513-518. Zbl 1153.60389, MR 2460246, 10.1080/17442500802006436
.

Files

Files Size Format View
MathBohem_135-2010-4_10.pdf 205.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo