Previous |  Up |  Next

Article

Title: On exit laws for subordinated semigroups by means of $\cal{C}^{1}$-subordinators (English)
Author: Hmissi, Mohamed
Author: Mliki, Ezzedine
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 51
Issue: 4
Year: 2010
Pages: 605-617
Summary lang: English
.
Category: math
.
Summary: We study the integral representation of potentials by exit laws in the framework of sub-Markovian semigroups of bounded operators acting on $L^2(m)$. We mainly investigate subordinated semigroups in the Bochner sense by means of $\mathcal{C}^{1}$-subordinators. By considering the one-sided stable subordinators, we deduce an integral representation for the original semigroup. (English)
Keyword: sub-Markovian semigroup
Keyword: potential
Keyword: Bochner subordination
Keyword: exit law
Keyword: $\mathcal{C}^{1}$-subordinator
Keyword: one-sided stable subordinator
MSC: 31C15
MSC: 39B42
MSC: 47D03
MSC: 60J99
idZBL: Zbl 1222.47069
idMR: MR2858264
.
Date available: 2010-11-30T16:22:36Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/140841
.
Reference: [1] Bachar I.: On exit laws for semigroups in weak duality.Comment. Math. Univ. Carolin. 42 (2001), no. 4, 711–719. Zbl 1090.31501, MR 1883379
Reference: [2] Berg C., Forst G.: Potential Theory on Locally Compact Abelian Groups.Springer, Berlin-Heidelberg-New York, 1975. Zbl 0308.31001, MR 0481057
Reference: [3] Bliedtner J., Hansen W.: Potential Theory. An Analytic and Probabilistic Approach to Balayage.Universitext, Springer, Berlin-Heidelberg-New York, 1986. Zbl 0706.31001, MR 0850715
Reference: [4] Carasso J., Kato T.: On subordinated holomorphic semigroups.Trans. Amer. Math. Soc. 327 (1991), 867–878. Zbl 0743.47017, MR 1018572, 10.1090/S0002-9947-1991-1018572-4
Reference: [5] Dellacherie C., Meyer P.A.: Probabilités et potentiel.Chapter XII-XVI, Hermann, Paris, 1987. Zbl 0624.60084, MR 0488194
Reference: [6] Dynkin E.B.: Green's and Dirichlet spaces associated with fine Markov process.J. Funct. Anal. 47 (1982), 381–418. MR 0665023, 10.1016/0022-1236(82)90112-4
Reference: [7] Fitzsimmons P.J., Getoor R.K.: On the potential theory of symmetric Markov processes.Math. Ann. 281 (1988), 495–512. Zbl 0627.60067, MR 0954155, 10.1007/BF01457159
Reference: [8] Fitzsimmons P.J.: Markov processes and nonsymmetric Markov processes without regularity.J. Funct. Anal. 85 (1989), 287–306. MR 1012207, 10.1016/0022-1236(89)90038-4
Reference: [9] Glover M., Rao H., Sikic H., Song R.: $\Gamma$-potentials, classical and modern potential theory and applications.Nato ASI Series, Series C Vol. 430, Kluwer Academic Publ., Dordrecht-Boston-London, 1994, pp. 217–232. MR 1321619
Reference: [10] Hmissi F.: On energy formulas for symmetric semigroups.Ann. Math. Sil. 19 (2005), 7–18. Zbl 1102.31010, MR 2225433
Reference: [11] Hmissi M.: Lois de sortie et semi-groupes basiques.Manuscripta Math. 75 (1992), 293–302. Zbl 0759.60080, MR 1167135, 10.1007/BF02567086
Reference: [12] Hmissi M.: Sur la représentation par les lois de sortie.Math. Z. 213 (1993), 647–656. Zbl 0790.31006, MR 1231882, 10.1007/BF03025742
Reference: [13] Hmissi M.: On the functional equation of exit laws for lattice semigroups.Rocznik Nauk.-Dydakt. Prace Mat. No. 15 (1998), 63–71. Zbl 1160.39326, MR 1826075
Reference: [14] Hmissi M., Mejri H.: On representation by exit laws for some Bochner subordinated semigroups.Ann. Math. Sil. 22 (2008), 7–26. Zbl 1190.47042, MR 2569077
Reference: [15] Hmissi M., Mejri H., Mliki E.: On the fractional powers of semidynamical systems.Grazer Math. Ber. 351 (2007), 66–78. Zbl 1152.45005, MR 2381104
Reference: [16] Hmissi M., Mejri H., Mliki E.: On the abstract exit equation.Grazer Math. Ber. 354 (2009), 84–98. MR 2649011
Reference: [17] Jacob N.: Pseudo Differential Operators and Markov Processes, Vol. 2: Generators and their semigroups.Imperial College Press, London, 2003.
Reference: [18] Sato K.: Lévy Processes and Infinitely Divisible Distributions.Cambridge Studies in Advanced Mathematics, 68, Cambridge University Press, Cambridge, 1999. Zbl 0973.60001, MR 1739520
Reference: [19] Yosida K.: Functional Analysis.Springer, Heidelberg-New York, 1965. Zbl 0830.46001
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_51-2010-4_6.pdf 255.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo