Previous |  Up |  Next

Article

Title: On Kantorovich's result on the symmetry of Dini derivatives (English)
Author: Koc, Martin
Author: Zajíček, Luděk
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 51
Issue: 4
Year: 2010
Pages: 619-629
Summary lang: English
.
Category: math
.
Summary: For $f:(a,b)\to \mathbb R$, let $A_f$ be the set of points at which $f$ is Lipschitz from the left but not from the right. L.V. Kantorovich (1932) proved that, if $f$ is continuous, then $A_f$ is a “($k_d$)-reducible set”. The proofs of L. Zajíček (1981) and B.S. Thomson (1985) give that $A_f$ is a $\sigma$-strongly right porous set for an arbitrary $f$. We discuss connections between these two results. The main motivation for the present note was the observation that Kantorovich's result implies the existence of a $\sigma$-strongly right porous set $A\subset (a,b)$ for which no continuous $f$ with $A\subset A_f$ exists. Using Thomson's proof, we prove that such continuous $f$ (resp. an arbitrary $f$) exists if and only if there exist strongly right porous sets $A_n$ such that $A_n\nearrow A$. This characterization improves both results mentioned above. (English)
Keyword: Dini derivative
Keyword: one-sided Lipschitzness
Keyword: $\sigma$-porous set
Keyword: strong right porosity
Keyword: abstract porosity
MSC: 26A27
MSC: 28A05
idZBL: Zbl 1224.26021
idMR: MR2858265
.
Date available: 2010-11-30T16:23:19Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/140842
.
Reference: [1] Doležal M., Zelený M.: Infinite games and $\sigma$-porosity.preprint.
Reference: [2] Kantorovich L.V.: Sur les nombres dérivés des fonctions continues.(in Russian), Mat. Sb. 39 (1932), 153–170.
Reference: [3] Oxtoby J.C.: Measure and Category.Springer, New York-Berlin, 1980. Zbl 0435.28011, MR 0584443
Reference: [4] Thomson B.S.: Real Functions.Lecture Notes in Mathematics, 1170, Springer, Berlin, 1985. Zbl 0809.26001, MR 0818744
Reference: [5] Zajíček L.: On the symmetry of Dini derivates of arbitrary functions.Comment. Math. Univ. Carolin. 22 (1981), 195–209. MR 0609947
Reference: [6] Zajíček L.: Porosity and $\sigma$-porosity.Real Anal. Exchange 13 (1987/88), 314–350. MR 0943561
Reference: [7] Zajíček L., Zelený M.: Inscribing closed non-$\sigma$-lower porous sets into Suslin non-$\sigma$-lower porous sets.Abstr. Appl. Anal. 2005, 221–227. MR 2197116, 10.1155/AAA.2005.221
Reference: [8] Zelený M., Zajíček L.: Inscribing compact non-$\sigma$-porous sets into analytic non-$\sigma$-porous sets.Fund. Math. 185 (2005), 19–39. MR 2161750, 10.4064/fm185-1-2
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_51-2010-4_7.pdf 260.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo